## Homework 10

#### 16-311: Introduction to Robotics

Last Updated: 12 April 2017

### Contents

| 1 | Learning Objectives              | 1 |
|---|----------------------------------|---|
| 2 | Basic translations and rotations | 1 |
| 3 | Homogeneous Transformations      | 2 |
| 4 | Forward Kinematics               | 2 |
| 5 | What To Submit                   | 3 |
|   |                                  |   |

## 1 Learning Objectives

- 1. Develop intuition for relative translations and rotations.
- 2. Practice expressing movements in matrices.
- 3. Practice expressing end effector location in terms of joint angles.

### 2 Basic translations and rotations

Draw the intermediate motions for a wedge that undergoes Trans  $(Y, \Delta y_1)$  Rot  $(Z, \theta_1)$  Trans  $(Y, \Delta y_2)$  Rot  $(X, \theta_2)$ . Choose and state reasonable angles and translations. You can use a computer (e.g. with MATLAB) or hand-draw these plots. All movements are relative.

### 3 Homogeneous Transformations

A can starts out with the center of its base on the origin. It has a radius of 1 cm, and a height of 3 cm. The homogeneous transformation matrix H is applied to the can.

- 1. Express this single matrix as a product of intermediate matrices where each matrix is either a rotation or translation about a single axis.
- 2. Express each of the matrices from the previous part in words (ex. "Rotation by 10 degrees about the z axis, Translation by 100 units on the y axis, etc.")

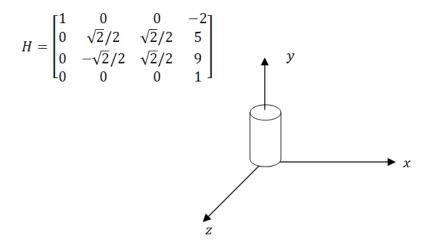



Figure 1: Sample can and homogenous transformation.

#### 4 Forward Kinematics

Derive the forward kinematics for the following RRP arm with base at the origin. Express the end effector location (x,y) and  $\theta$  in terms of the known quantities listed in the picture.

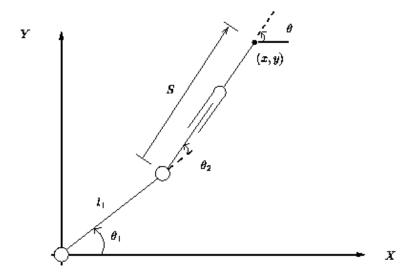



Figure 2: RRP arm.

# 5 What To Submit

Sumbissions are due on Autolab by the date specified in the Syllabus.

- 1. Create a .pdf file with the written answers ALL THE SECTIONS named hw10.pdf.
- 2. Ensure that your .pdf contains all drawings for Part 2, answers for Part 3 and equations for x, y and  $\theta$  for Part 4.