
15-859FF: Coping with Intractability CMU, Fall 2019
Lecture #12: Integer Linear Programming (Part II of III) October 14, 2019
Lecturer: Anupam Gupta Scribe: Rhea Jain

1 Shortest Vector Problem: History and Motivation

Recall that for a given basis B = (b1, ..., bd), the lattice associated with this basis is defined as

Λ = {
d∑
i=1

λibi|λi ∈ Z}

Then, continuing from last lecture, we want to solve the problem of knowing if an integer point
exists in a convex body. We do this in three steps:

1. ”Round” this convex body

2. Find a ”good” basis

3. Either show that there exists a point in the convex body, or enumerate over lower dimensional
problems

In the previous lecture, we discussed using the Gauss-Lagrange approach to find such a basis for
the 2D case. Today’s lecture will focus on finding a ”good” basis in the general case. We loosely
define ”good” as being close to orthogonal (by some notion of close), and having short vectors. In-
tuitively, this is because having short vectors enables us to take small steps when stepping through
the lattice, making it easier to find the point(s) inside the convex body. This, then, motivates the
following problem:

Shortest Vector Problem: Given a lattice Λ, find the shortest non-zero vector. The length
of the solution to this problem is denoted SVP(Λ).

Recall Minkowski’s theorem from the previous lecture, which states that ∃ a nonzero vector in
any lattice of length

√
d · (det(Λ))1/d. The goal of today’s lecture will be to introduce the LLL

algorithm, and prove the following theorem:

Theorem 12.1. The LLL algorithm returns a vector of length ≤ 2
d−1
2 SVP(Λ).

1.1 History

Consider the following problem: Given α1, ..., αd, find P1, ..., Pd ∈ Z, q ∈ Z, q ≤ Q (for some fixed
Q), s.t.

|αi −
pi
q
| ≤ small

A simple initial solution to this would be to set q = Q, Pi = [αiQ] (the closest integer to αiQ).
This gives us an error ≤ 1

2q , since Pi is a factor of 1
Q = 1

q away from the closest integer. Can we
do better? That is, could we get ε

q for any ε > 0? The following theorem states that this is indeed
possible.

1

Theorem 12.2. There exists a solution to the above problem with error 1
qQ1/d . Then, for any

ε > 0, we can choose a big enough Q to get ε = 1
Q1/d .

Proof. We can rewrite this problem as follows: find integers pi, q s.t.

∀i, |qαi − pi| ≤ ε, |q| ≤ Q

In other words, consider the body created by the range ε away from the line qαi from −Q to Q in
every coordinate (as shown in Figure 12.1). The volume of this body is clearly

(2Q)(2ε)d = 2d+1Qεd = 2d+1

since we chose ε = 1
Q1/d . By Minkowski’s theorem, ∃p1, ..., pd inside this body, as desired.

Figure 12.1: Fixed coordinate diagram of convex body

This theorem gives us the existence of such vectors. We want to be able to find the vectors
themselves.

2 LLL Algorithm

Recall from the previous lecture the Gauss-Lagrange algorithm, in which we subtracted the integer
part of µ = 〈b2,b1〉

‖b1‖2 copies of b1 from b2, using Gram-Schmidt as motivation (remember, we want

these vectors to be close to orthogonal). Now, we want to extend this to the case with dimension
d. As in the Gauss-Lagrange algorithm, we want µ ≤ 1

2 (for each pair). Furthermore, we want to
ensure the lengths don’t fall too fast (if they decrease, they don’t do so by much). This intuition
is formalized in the following theorem:

Theorem 12.3. We want to maintain an ordering of b1, ..., bd → b∗1, ..., b
∗
d, where for µij =

〈bj ,b∗i 〉
‖b∗i ‖2

b∗j = bj −
∑
i<j

µijb
∗
i

with the following two conditions:

1. Coefficient reducedness: |µij | ≤ 1
2 ∀i < j

2. Lovasz Condition: |b∗i |2 < 2|b∗i+1|2 ∀i

2

Then, the LLL algorithm achieves both conditions.

Proof. We start by introducing the LLL algorithm. This runs in two steps:

1. For some i, j pairs, we subtract copies of bi from bj until we have satisfied coefficient re-
ducednes

2. If ∃i, i + 1 violating the Lovasz condition, we swap i and i + 1 and go back to step 1. Else,
we return b1.

We run step 1 of the algorithm as follows:

Algorithm 1 Step 1 of LLL

1: for j = 1, ..., d do
2: for l = j, ..., 1 do

3: µlj ←
〈bj ,b∗l 〉
|b∗l |2

4: if |µlj | > 1
2 then

5: bj ← bj − [µ]bl
6: end if
7: end for
8: end for

We want to show that following this algorithm, once we’ve made |µlj | < 1
2 , within this round, it

will stay that way. Suppose we have b1, ..., bl, ..., bj , ..., bn and |µlj | > 1
2 . Then, we want to set

bj = bj − c · bl, for some integer c. We want to show that µik remains unchanged for any i, k pair

that has already been visited. Recall that µik =
〈bk,b∗i 〉
|b∗i |2

. We consider two cases, as demonstrated

in the matrix in Figure 12.1: 1. k < j. Clearly, bk does not change as a result of changing bj .

Figure 12.2: Changed and unchanged µ values in matrix

Furthermore, since i < k < j, b∗i only relies on b∗1, ..., b
∗
i−1 and bi. Since none of these are changed,

this µ term is also unchanged, as desired.
2. k = j, i > l. Here, notice that bl must be orthogonal to b∗i . This is because bj can be written
as a linear combination of b∗1, ..., b

∗
j by construction, and b∗i is constructed by subtracting the span

of b∗1, ..., b
∗
i−1, which is equivalent to the span of b1, ..., bi−1 from bi. Therefore, the dot product of

〈bj , b∗i 〉 will remain unchanged despite subtracting bl from bj .

3

The last thing for us to show in this algorithm is that this algorithm terminates in polynomial
time.

Lemma 12.4. Suppose a1, a2 are vectors s.t. |µ12| ≤ 1
2 and |a∗2|2 ≤ 1

2 |a
∗
1|2. Then,

|a2|2 ≤
3

4
|a∗1|2 =

3

4
|a1|2

.

Proof.
a2 = a∗2 + µ12a1 = a∗2 + µ12a

∗
1

Since a∗2 and a∗1 are orthogonal, we get

|a2|2 = |a∗2|2 + µ212|a∗1|2

Using the two assumptions, we get |a∗2|2 ≤ 1
2 |a
∗
1|2, and µ212|a∗1|2 ≤ 1

4 |a
∗
1|2. Therefore,

|a2|2 ≤
3

4
|a∗1|2 =

3

4
|a1|2

as desired.

This tells us that if the Lovasz condition was violated, i.e. |a∗2|2 ≤ 1
2 |a
∗
1|, then that must mean |a2|

was smaller than |a1| by a factor of
√

3/4. Therefore, when we swap the two, the new a1 will be
smaller than the old one by a factor of

√
3/4. We can extend the same reasoning to show that if

we condition on b∗1, ..., b
∗
i−1 and swap bi and bi+1 (because the Lovasz condition was violated), then

the new |bi| is smaller than the old one by a factor of
√

3/4.
Consider the potential function

Φ =
d∏
i=1

voli(b1, ..., bi)

We leave it as an exercise to verify that this is equal to

d∏
i=1

(
∏
j≤i
|b∗j |) =

d∏
i=1

|b∗i |d−i+1

Notice, then, that if we swap i and i+1, all the volumes stay the same except voli, which is reduced
by

√
3/4. This algorithm only repeats if it performs a swap, and everytime it does, the potential

decreases by at least
√

3/4. The initial potential is at most (poly(d) maxij |Bij |)poly(d). Since we
reduce this potential by a constant factor at every step, the overall algorithm runs for at most
poly(d, log maxij Bij) steps. Therefore, the LLL algorithm is efficient and achieves both conditions,
as desired.

Lastly, we show that this algorithm correctly outputs a 2
d−1
2 approximation to SVP.

Theorem 12.5. b1 is a 2
d−1
2 approximation to SVP

4

Proof. By the end of the algorithm, we know that for all i,

|b1|2 = |b∗1|2 ≤ 2i−1|b∗i |2

(this follows inductively from the Lovasz condition). Since i ≤ d, we have that for all i

|b1|2 ≤ 2d−1|b∗i |2

Since this is true for all i, it must be true for the minimum. Therefore,

|b1|2 ≤ 2d−1 min
i
|b∗i |2

|b1| ≤ 2
d−1
2 min

i
|b∗i |

Now, we want to show that v ≥ mini |b∗i |. Note that if this is true, then b1 is a 2
d−1
2 approximation

to SVP, and we are done.
Consider the shortest vector v in this lattice. v = λ1b1 + ... + λlbl, where λl is the last nonzero
coefficient. If l = 1, then |v| ≥ |b1|, and we are done. Else, let H be the span of b1, ..., bl−1. v
cannot be a vector along the plane H, or λl would be 0. However, the distance to the next plane
is, by definition, b∗l , as demonstrated in Figure 12.3:

Figure 12.3: H plane and b∗l vector

Therefore |v| ≥ |b∗l |, which implies that |v| ≥ mini |b∗i |, as desired.

5

	Shortest Vector Problem: History and Motivation
	History

	LLL Algorithm

