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Preface

These are notes to a lecture taught by J. Matoušek at Charles University in
Prague for several years. The audience were students of mathematics or compu-
ter science, usually with interest in combinatorics and/or theoretical computer
science.

Generally speaking, an introductory text on the probabilistic method is
rather superfluous, since at least two excellent sources are available: the beau-
tiful thin book

J. Spencer: Ten lectures on the probabilistic method, CBMS-NSF,
SIAM, Philadelphia, PA, 1987

and the more modern and more extensive but no less readable

N. Alon and J. Spencer: The Probabilistic Method, J. Wiley and
Sons, New York, NY, 2nd edition, 2000.

The lecture was indeed based on these. However, these books were not generally
available to students in Prague, and this was the main reason for starting with
the present notes. For students, the notes may have another advantage too:
they cover the material usually presented in the course relatively concisely.
Chapters 8 and 9 go beyond the usual scope of the course and present, mostly
without proofs, more recent and more advanced results on strong concentration.

Our presentation is slightly more formal in some cases and includes a brief
review of the relevant probability theory notions. This keeps with the Prague
mathematical tradition and should be closer to the presentation the students
are used to from other math courses. Teaching experience also shows that the
students’ proficiency in application of the notions learned in probability theory
is limited and that it is useful to demonstrate concrete applications of abstract
probabilistic notions in some detail.

The techniques are usually illustrated with combinatorial examples. The
notation and definitions not introduced here can be found in the book

J. Matoušek and J. Nešetřil: Invitation to Discrete Mathematics,
Oxford University Press, Oxford 1998

(Czech version: Kapitoly z diskrétní matematiky, Nakladatelství Karolinum
2000).

A large part of the material is taken directly from the Alon–Spencer book
cited above, sometimes with a little different presentation. Readers wishing to
pursue the subject in greater depth are certainly advised to consult that book.
A more advanced source is
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S. Janson, T.  Luczak, A. Ruciński: Topics in random graphs, J.
Wiley and Sons, New York, NY, 2000.

A very nice book on probabilistic algorithms, also including a chapter on the
probabilistic method per se, is

R. Motwani and P. Raghavan: Randomized Algorithms, Cambridge
University Press, Cambridge, 1995.

Two journals in whose scope the probabilistic method occupies a central place
are Random Structures & Algorithms and Combinatorics, Probability & Com-
puting . Papers with applications of the probabilistic method are abundant and
can be found in many other journals too.

A note for Czech students. Teorie pravděpodobnosti, podobně jako jiné
matematické disciplíny, má ustálenou základní českou terminologii, která se
v mnoha případech neshoduje s doslovným překladem terminologie anglické. Do
textu jsme zahrnuli některé české termíny jako poznámky pod čarou, abychom
nepodporovali bujení obratů typu “očekávaná hodnota”, což je doslovný překlad
anglického “expectation”, místo správného střední hodnota.
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Preliminaries

1.1 Probability Theory

This section summarizes the fundamental notions of probability theory and
some results which we will need in the following chapters. In no way is it inten-
ded to serve as a substitute for a course in probability theory.

1.1.1 Definition. A probability space1 is a triple (Ω, Σ, P), where Ω is a
set, Σ ⊆ 2Ω is a σ-algebra on Ω (a collection of subsets containing Ω and
closed on complements, countable unions and countable intersections), and P
is a countably additive measure2 on Σ with P[Ω] = 1. The elements of Σ are
called events3 and the elements of Ω are called elementary events. For an
event A, P[A] is called the probability of A.

In this text, we will consider mostly finite probability spaces where the set
of elementary events Ω is finite and Σ = 2Ω. Then the probability measure is
determined by its values on elementary events; in other words, by specifying a
function p : Ω → [0, 1] with

∑

ω∈Ω p(ω) = 1. Then the probability measure is
given by P[A] =

∑

ω∈A p(ω).
The basic example of a probability measure is the uniform distribution4 on

Ω, where

P[A] =
|A|
|Ω| for all A ⊆ Ω.

Such a distribution represents the situation where any outcome of an experiment
(such as rolling a die)5 is equally likely.

1.1.2 Definition (Random graphs). 6 The probability space of random gra-
phs G(n, p) is a finite probability space whose elementary events are all graphs
on a fixed set of n vertices, and where the probability of a graph with m edges
is

p(G) = pm(1 − p)(
n
2)−m.

1probability space=pravděpodobnostní prostor
2measure=míra
3event= jev
4uniform distribution= rovnoměrné rozdělení
5rolling a die=hod kostkou
6random graph=náhodný graf
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This corresponds to generating the random graph by including every po-
tential edge independently with probability p. For p = 1

2 , we toss a fair coin7

for each pair {u, v} of vertices and connect them by an edge if the outcome is
heads.8 9

Here is an elementary fact which is used all the time:

1.1.3 Lemma. For any collection of events A1, . . . , An,

P

[ n
⋃

i=1

Ai

]

≤
n
∑

i=1

P[Ai].

Proof. For i = 1, . . . , n, we define

Bi = Ai \ (A1 ∪ A2 ∪ . . . ∪ Ai−1).

Then
⋃

Bi =
⋃

Ai, P[Bi] ≤ P[Ai], and the events B1, . . . , Bn are disjoint. By
additivity of the probability measure,

P

[ n
⋃

i=1

Ai

]

= P

[ n
⋃

i=1

Bi

]

=
n
∑

i=1

P[Bi] ≤
n
∑

i=1

P[Ai].

2

1.1.4 Definition. Events A,B are independent10 if

P[A ∩ B] = P[A] P[B] .

More generally, events A1, A2, . . . , An are independent if for any subset of
indices I ⊆ [n]

P

[

⋂

i∈I

Ai

]

=
∏

i∈I

P[Ai].

We use the convenient notation [n] for the set {1, 2, . . . , n}.
The independence of A1, A2, . . . , An is not equivalent to all the pairs Ai, Aj

being independent. Exercise: find three events A1, A2 and A3 that are pairwise
independent but not mutually independent.

Intuitively, the property of independence means that the knowledge of whe-
ther some of the events A1, . . . , An occurred does not provide any information
regarding the remaining events.

1.1.5 Definition (Conditional probability). For events A and B with
P[B] > 0, we define the conditional probability11 of A, given that B occurs, as

P[A|B] =
P[A ∩ B]

P[B]
.

7toss a fair coin =hodit spravedlivou mincí
8heads= líc (hlava)
9tails = rub (orel)
10independent events=nezávislé jevy
11conditional probability=podmíněná pravděpodobnost
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Note that if A and B are independent, then P[A|B] = P[A].

1.1.6 Definition (Random variable). A real random variable12 on a pro-
bability space (Ω, Σ, P) is a function X: Ω → R that is P-measurable. (That is,
for any a ∈ R, {ω ∈ Ω: X(ω) ≤ a} ∈ Σ.)

We can also consider random variables with other than real values; for
example, a random variable can have complex numbers or n-component vectors
of real numbers as values. In such cases, a random variable is a measurable
function from the probability space into the appropriate space with measure
(complex numbers or Rn in the examples mentioned above). In this text, we
will mostly consider real random variables.

1.1.7 Definition. The expectation13 of a (real) random variable X is

E [X] =

∫

Ω
X(ω) dP(ω).

Any real function on a finite probability space is a random variable. Its
expectation can be expressed as

E [X] =
∑

ω∈Ω
p(ω)X(ω).

1.1.8 Definition (Independence of variables). Real random variables
X,Y are independent if we have, for every two measurable sets A,B ⊆ R,

P[X ∈ A and Y ∈ B] = P[X ∈ A] · P[Y ∈ B] .

Note the shorthand notation for the events in the previous definition: For
example, P[X ∈ A] stands for P[{ω ∈ Ω: X(ω) ∈ A}].

Intuitively, the independence of X and Y means that the knowledge of the
value attained by X gives us no information about Y , and vice versa. In order
to check independence, one need not consider all measurable sets A and B; it
is sufficient to look at A = (−∞, a] and B = (−∞, b]. That is, if

P[X ≤ a and Y ≤ b] = P[X ≤ a] P[Y ≤ b]

for all a, b ∈ R, then X and Y are independent.

As we will check in Chapter 3, E [X + Y ] = E [X] +E [Y ] holds for any two
random variables (provided that the expectations exist). On the other hand,
E [XY ] is generally different from E [X]E [Y ]. But we have

1.1.9 Lemma. If X and Y are independent random variables, then

E [XY ] = E [X] · E [Y ] .

12random variable=náhodná proměnná
13expectation= střední hodnota!!!
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Proof (for finite probability spaces). If X and Y are random variables
on a finite probability space, the proof is especially simple. Let VX , VY be the
(finite) sets of values attained by X and by Y , respectively. By independence,
we have P[X = a and Y = b] = P[X = a] P[Y = b] for any a ∈ VX and b ∈ VY .
We calculate

E [XY ] =
∑

a∈VX ,b∈VY

ab · P[X = a and Y = b]

=
∑

a∈VX ,b∈VY

ab · P[X = a] P[Y = b]

=

(

∑

a∈VX

a P[X = a]

)(

∑

b∈VY

b P[Y = b]

)

= E [X]E [Y ] .

For infinite probability spaces, the proof is formally a little more complicated
but the idea is the same. 2

1.2 Useful Estimates

In the probabilistic method, many problems are reduced to showing that certain
probability is below 1, or even tends to 0. In the final stage of such proofs, we
often need to estimate some complicated-looking expressions. The golden rule
here is to start with the roughest estimates, and only if they don’t work, one
can try more refined ones. Here we describe the most often used estimates for
basic combinatorial functions.

For the factorial function n!, we can often do with the obvious upper bound
n! ≤ nn. More refined bounds are

(

n

e

)n

≤ n! ≤ en

(

n

e

)n

(where e = 2.718281828 . . . is the basis of natural logarithms), which can be
proved by induction. The well-known Stirling formula is very seldom needed in
its full strength.

For the binomial coefficient
(n
k

)

, the basic bound is
(n
k

) ≤ nk, and sharper
ones are

(

n

k

)k

≤
(

n

k

)

≤
(

en

k

)k

.

For all k, we also have
(n
k

) ≤ 2n. Sometimes we need better estimates of the

middle binomial coefficient
(2m

m

)

; we have

22m

2
√

m
≤
(

2m

m

)

≤ 22m√
2m

(also see Section 5.2 for a derivation of a slightly weaker lower bound).
Very often we need the inequality 1+x ≤ ex, valid for all real x. In particular,

for bounding expressions of the form (1 − p)m from above, with p > 0 small,
one uses

(1 − p)m ≤ e−mp
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almost automatically. For estimating such expressions from below, which is
usually more delicate, we can often use

1 − p ≥ e−2p,

which is valid for 0 ≤ p ≤ 1
2 .
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The Probabilistic Method

The probabilistic method is a remarkable technique for proving the existence
of combinatorial objects with specified properties. It is based on probability
theory but, surprisingly, it can be used for proving theorems that have nothing
to do with probability. The usual approach can be described as follows.

We would like to prove the existence of a combinatorial object with specified
properties. Unfortunately, an explicit construction of such a “good” object does
not seem feasible, and maybe we do not even need a specific example; we just
want to prove that something “good” exists. Then we can consider a random
object from a suitable probability space and calculate the probability that it
satisfies our conditions. If we prove that this probability is strictly positive,
then we conclude that a “good” object must exist; if all objects were “bad”,
the probability would be zero.

Let us start with an example illustrating how the probabilistic method works
in its basic form.

2.1 Ramsey Numbers

The Ramsey theorem states that any sufficiently large graph contains either a
clique or an independent set of a given size. (A clique1 is a set of vertices inducing
a complete subgraph and an independent set2 is a set of vertices inducing an
edgeless subgraph.)

2.1.1 Definition. The Ramsey number R(k, ℓ) is

R(k, ℓ) = min {n: any graph on n vertices contains a clique

of size k or an independent set of size ℓ}.

The Ramsey theorem guarantees that R(k, ℓ) is always finite. Still, the pre-
cise values of R(k, ℓ) are unknown but for a small number of cases, and it is
desirable at least to estimate R(k, ℓ) for large k and ℓ. Here we use the proba-
bilistic method to prove a lower bound on R(k, k).

1clique= klika (úplný podgraf)
2independent set =nezávislá množina
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2.1.2 Theorem. For any k ≥ 3,

R(k, k) > 2k/2−1.

Proof. Let us consider a random graph G(n, 1/2) on n vertices where every
pair of vertices forms an edge with probability 1

2 , independently of the other
edges. (We can imagine flipping a coin for every potential edge to decide whether
it should appear in the graph.) For any fixed set of k vertices, the probability
that they form a clique is

p = 2−(k
2).

The same goes for the occurrence of an independent set, and there are
(n
k

)

k-tuples of vertices where a clique or an independent set might appear. Now
we use the fact that the probability of a union of events is at most the sum of
their respective probabilities (Lemma 1.1.3), and we get

P[G(n, 1/2) contains a clique or an indep. set of size k] ≤ 2

(

n

k

)

2−(k
2).

It remains to choose n so that the last expression is below 1. Using the sim-
plest estimate

(n
k

) ≤ nk, we find that it is sufficient to have 2nk < 2k(k−1)/2. This

certainly holds whenever n ≤ 2k/2−1. Therefore, there are graphs on ⌊2k/2−1⌋
vertices that contain neither a clique of size k nor an independent set of size k.
This implies R(k, k) > 2k/2−1. 2

Let us remark that, by using finer estimates in the proof, the lower bound
for R(k, k) can be improved a little, say to 2k/2. But a result even slightly better
than this seems to require a more powerful technique. In particular, no lower
bound is known of the form ck with a constant c >

√
2, although the best upper

bound is about 4k.

One might object that the use of a probability space is artificial here and
the same proof can be formulated in terms of counting objects. In effect, we
are counting the number of bad objects and trying to prove that it is less than
the number of all objects, so the set of good objects must be nonempty. In
simple cases, it is indeed possible to phrase such proofs in terms of counting
bad objects. However, in more sophisticated proofs, the probabilistic formalism
becomes much simpler than counting arguments. Furthermore, the probabilis-
tic framework allows us to use many results of probability theory—a mature
mathematical discipline.

For many important problems, the probabilistic method has provided the
only known solution, and for others, it has provided accessible proofs in cases
where constructive proofs are extremely difficult.

2.2 Hypergraph Coloring

2.2.1 Definition. A k-uniform hypergraph is a pair (X,S) where X is the set
of vertices and S ⊆ (X

k

)

is the set of edges (k-tuples of vertices).
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2.2.2 Definition. A hypergraph is c-colorable if its vertices can be colored
with c colors so that no edge is monochromatic (at least two different colors
appear in every edge).

This is a generalization of the notion of graph coloring. Note that graphs
are 2-uniform hypergraphs and the condition of proper coloring requires that
the vertices of every edge get two different colors.

Now we will be interested in the smallest possible number of edges in a
k-uniform hypergraph that is not 2-colorable.

2.2.3 Definition. Let m(k) denote the smallest number of edges in a k-
uniform hypergraph that is not 2-colorable.

For graphs, we have m(2) = 3, because the smallest non-bipartite graph is
a triangle. However, the problem becomes much more difficult for larger k. As
we will prove, m(3) = 7, but the exact value of m(k) is unknown for k > 3.

Again, we can get a lower bound by probabilistic reasoning.

2.2.4 Theorem. For any k ≥ 2,

m(k) ≥ 2k−1.

Proof. Let us consider a k-uniform hypergraph H with less than 2k−1 edges.
We will prove that it is 2-colorable.

We color every vertex of H independently red or blue, with probability
1
2 . The probability that the vertices of a given edge are all red or all blue is
p = 2 ·(12 )k. Supposing H has |S| < 2k−1 edges, the probability that there exists
a monochromatic edge is at most p|S| < p2k−1 = 1. So there is a non-zero
probability that no edge is monochromatic and a proper coloring must exist.

2

Note that for k = 3, we get m(3) ≥ 4. On the other hand, the smallest known
3-uniform hypergraph that is not 2-colorable is the finite projective plane with
7 points, the Fano plane.

2.2.5 Definition. The Fano plane is the hypergraph H = (X,S), where

X = {1, 2, 3, 4, 5, 6, 7}

are the points and

S = {{1, 2, 3}, {3, 4, 5}, {5, 6, 1}, {1, 7, 4}, {2, 7, 5}, {3, 7, 6}, {2, 4, 6}}

are the edges.

1
2

3

4

5

6

7
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2.2.6 Lemma. m(3) ≤ 7.

Proof. We prove that the Fano plane is not 2-colorable. We give a quick
argument using the fact that H is a projective plane, and thus for any two
points, there is exactly one edge (line) containing both of them.

Suppose that we have a 2-coloring A1 ∪ A2 = X,A1 ∩ A2 = ∅, where A1 is
the larger color class.

If |A1| ≥ 5, then A1 contains at least
(5
2

)

= 10 pairs of points. Each pair
defines a unique line, but as there are only 7 lines in total, there must be two
pairs of points defining the same line. So we have three points of the same color
on a line.

If |A1| = 4 then A1 contains
(4
2

)

= 6 pairs of points. If two pairs among
them define the same line, that line is monochromatic and we are done. So
suppose that these 6 pairs define different lines ℓ1, . . . , ℓ6. Then each point of
A1 is intersected by 3 of the ℓi. But since each point in the Fano plane lies on
exactly 3 lines and there are 7 lines in total, there is a line not intersecting A1
at all. That line is contained in A2 and thus monochromatic. 2

Now we will improve the lower bound to establish that m(3) = 7.

2.2.7 Theorem. Any system of 6 triples is 2-colorable; i.e. m(3) ≥ 7.

Proof: Let us consider a 3-uniform hypergraph H = (X,S), |S| ≤ 6. We want
to prove that H is 2-colorable. We will distinguish two cases, depending on the
size of X.

If |X| ≤ 6, we apply the probabilistic method. We can assume that |X| = 6,
because we can always add vertices that are not contained in any edge and the-
refore do not affect the coloring condition. Then we choose a random subset of
3 vertices which we color red and the remaining vertices become blue. The total
number of such colorings is

(6
3

)

= 20. For any edge (which is a triple of vertices),
there are two colorings that make it either completely red or completely blue,
so the probability that it is monochromatic is 1

10 . We have at most 6 edges, and
so the probability that any of them is monochromatic is at most 6

10 < 1.
For |X| > 6, we proceed by induction. Suppose that |X| > 6 and |S| ≤ 6. It

follows that there exist two vertices x, y ∈ X that are not “connected” (a pair
of vertices is connected if they appear together in some edge). This is because
every edge produces three connected pairs, so the number of connected pairs
is at most 18. On the other hand, the total number of vertex pairs is at least
(7
2

)

= 21, so they cannot be all connected.
Now if x, y ∈ X are not connected, we define a new hypergraph by merging

x and y into one vertex:

X ′ = X \ {x, y} ∪ {z},
S′ = {M ∈ S: M ∩ {x, y} = ∅} ∪ {M \ {x, y} ∪ {z}: M ∈ S,M ∩ {x, y} 6= ∅}.

This (X ′, S′) is a 3-uniform hypergraph as well, |S′| = |S| ≤ 6, and |X ′| =
|X|−1, so by the induction hypothesis it is 2-colorable. If we extend the coloring
of X ′ to X so that both x and y get the color of z, we obtain a proper 2-coloring
for (X,S). 2
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2.3 The Erdős–Ko–Rado Theorem

2.3.1 Definition. A family F of sets is intersecting if for all A,B ∈ F ,
A ∩ B 6= ∅.

2.3.2 Theorem (The Erdős–Ko–Rado Theorem). If |X| = n, n ≥ 2k,
and F is an intersecting family of k-element subsets of X, then

|F| ≤
(

n − 1

k − 1

)

.

Clearly, this is tight, because a family of all the k-element subsets containing
a particular point is intersecting and the number of such subsets is

(n−1
k−1
)

. (This
configuration is sometimes called a sunflower and the theorem is referred to as
the Sunflower Theorem.)

2.3.3 Lemma. Consider X = {0, 1, . . . , n − 1} with addition modulo n and
define As = {s, s + 1, . . . , s + k − 1} ⊆ X for 0 ≤ s < n. Then for n ≥ 2k, any
intersecting family F ⊆ (X

k

)

contains at most k of the sets As.

Proof. If Ai ∈ F , then any other As ∈ F must be one of the sets
Ai−k+1, . . . , Ai−1 or Ai+1, . . . , Ai+k−1. These are 2k − 2 sets, which can be di-
vided into k − 1 pairs of the form (As, As+k). As n ≥ 2k, As ∩ As+k = ∅, and
only one set from each pair can appear in F . 2

Proof of the theorem.We can assume that X = {0, 1, . . . , n−1} and F ⊆ (X
k

)

is an intersecting family. For a permutation σ: X → X, we define

σ(As) = {σ(s), σ(s + 1), . . . , σ(s + k − 1)},

addition again modulo n. The sets σ(As) are just like those in the lemma, only
with the elements relabeled by the permutation σ, so by the lemma at most k
of these n sets are in F . Therefore, if we choose random s and σ independently
and uniformly,

P[σ(As) ∈ F ] ≤ k

n

(the underlying probability space here is the product [n]×Sn with the uniform
measure, where Sn is the set of all permutations on [n]). But this choice of
σ(As) is equivalent to a random choice of a k-element subset of X, so

P[σ(As) ∈ F ] =
|F|
(n
k

)

and

|F| =

(

n

k

)

P[σ(As) ∈ F ] ≤
(

n

k

)

k

n
=

(

n − 1

k − 1

)

.

2
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2.4 Pairs of Sets

Let k and ℓ be fixed natural numbers. We are interested in the maximum n =
n(k, ℓ) such that there exist sets A1, A2, . . . , An and B1, B2, . . . , Bn satisfying
the following conditions

(C0) |Ai| = k, |Bi| = ℓ for all i = 1, 2, . . . , n.

(C1) Ai ∩ Bi = ∅ for all i = 1, 2, . . . , n.

(C2) Ai ∩ Bj 6= ∅ for all i 6= j, i, j = 1, 2, . . . , n.

An example shows that n(k, ℓ) ≥ (k+ℓ
k

)

: let A1, . . . , An be all the k-element
subsets of {1, 2, . . . , k + ℓ} and let Bi be the complement of Ai. An ingenious
probabilistic argument shows that this is the best possible (note that at first
sight, it is not at all obvious that n(k, ℓ) is finite!).

2.4.1 Theorem. For any k, ℓ ≥ 1, we have n(k, ℓ) =
(k+ℓ

k

)

.

Before we prove this theorem, we explain a motivation for this (perhaps
strange-looking) problem. It is related to the transversal number of set sys-
tems, one of the central issues in combinatorics. Recall that a set T ⊆ X is a
transversal of a set system F ⊆ 2X if S ∩ T 6= ∅ for all S ∈ F . The transversal
number τ(F) is the size of the smallest transversal of F .

In order to understand a combinatorial parameter, one usually studies the
critical objects. In our case, a set system F is called τ -critical if τ(F \ {S}) <
τ(F) for each S ∈ F . A question answered by the above theorem was the
following: what is the maximum possible number of sets in a τ -critical system
F , consisting of k-element sets and with τ(F) = ℓ+1? To see the connection, let
F = {A1, A2, . . . , An}, and let Bi be an ℓ-element transversal of F \{Ai}. Note
that by the τ -criticality of F , the Bi exist and satisfy conditions (C0)–(C2).
Thus |F| ≤ n(k, ℓ).

Proof of Theorem 2.4.1. Let X =
⋃n

i=1(Ai ∪Bi) be the ground set. Arrange
the elements of X in a random linear order (all the |X|! orderings having the
same probability). Let Ui be the event “each element of Ai precedes each element

of Bi”. We have P [Ui] =
(k+ℓ

k

)−1
.

Crucially, we note that Ui and Uj cannot occur simultaneously for i 6= j.
Indeed, since Ai ∩ Bj 6= ∅ 6= Aj ∩ Bi, we have max Ai ≥ min Bj and max Aj ≥
min Bi. If both Ui and Uj occurred, then max Ai < min Bi and max Aj <
min Bj, and we get a contradiction: max Ai ≥ min Bj > max Aj ≥ min Bi >
max Ai. Therefore

1 ≥ P

[ n
⋃

i=1

Ui

]

=
n
∑

i=1

P[Ui] =
n

(k+ℓ
k

)

and the theorem follows. 2

The same proof shows that if A1, A2, . . . , An and B1, B2, . . . , Bn are finite

sets satisfying (C1) and (C2) then
∑n

i=1

(|Ai|+|Bi|
|Ai|

)−1 ≤ 1. This implies, among
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others, the famous Sperner theorem: If F is a family of subsets of [m] with no
two distinct sets A,B ∈ F satisfying A ⊂ B, then |F| ≤ ( m

⌊m/2⌋
)

. To see this, set

F = {A1, A2, . . . , An} and Bi = [m] \ Ai, and use the fact that
(m

k

) ≤ ( m
⌊m/2⌋

)

for all k = 0, 1, . . . ,m.
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Linearity of Expectation

3.1 Computing Expectation Using Indicators

The proofs in this chapter are based on the following lemma:

3.1.1 Lemma. The expectation is a linear operator; i.e., for any two random
variables X, Y and constants α, β ∈ R:

E [αX + βY ] = αE [X] + βE [Y ] .

Proof. E [αX + βY ] =
∫

Ω (αX + βY ) dP = α
∫

ΩX dP+β
∫

Ω Y dP = αE [X]+
βE [Y ] . 2

This implies that the expectation of a sum of random variables X = X1 +
X2 + · · · + Xn is equal to

E [X] = E [X1] +E [X2] + · · · +E [Xn] .

This fact is elementary, yet powerful, since there is no restriction whatsoever
on the properties of Xi, their dependence or independence.

3.1.2 Definition (Indicator variables). For an event A, we define the indi-
cator variable IA:

• IA(ω) = 1 if ω ∈ A, and

• IA(ω) = 0 if ω /∈ A.

3.1.3 Lemma. For any event A, we have E [IA] = P[A].

Proof.

E [IA] =

∫

Ω
IA(ω) dP =

∫

A
dP = P[A] .

2

In many cases, the expectation of a variable can be calculated by expressing
it as a sum of indicator variables

X = IA1 + IA2 + · · · + IAn
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of certain events with known probabilities. Then

E [X] = P[A1] + P[A2] + · · · + P[An] .

Example. Let us calculate the expected number of fixed points of a random
permutation σ on {1, . . . , n}. If

X(σ) = |{i: σ(i) = i}|,
we can express this as a sum of indicator variables:

X(σ) =
n
∑

i=1

Xi(σ)

where Xi(σ) = 1 if σ(i) = i and 0 otherwise. Then

E [Xi] = P[σ(i) = i] =
1

n

and

E [X] =
1

n
+

1

n
+ · · · +

1

n
= 1.

So a random permutation has 1 fixed point (or “loop”) on the average.

3.2 Hamiltonian Paths

We can use the expectation of X to estimate the minimum or maximum value
of X, because there always exists an elementary event ω ∈ Ω for which X(ω) ≥
E [X] and similarly, we have X(ω) ≤ E [X] for some ω ∈ Ω.

We recall that a tournament is an orientation of a complete graph (for any
two vertices u, v, exactly one of the directed edges (u, v) and (v, u) is present).
A Hamiltonian path in a tournament is a directed path passing through all
vertices. The following result of Szele (1943) shows the existence of a tournament
with very many Hamiltonian paths.

3.2.1 Theorem. There is a tournament on n vertices that has at least n!
2n−1

Hamiltonian paths.

Proof. Let us calculate the expected number of Hamiltonian paths in a random
tournament T (every edge has a random orientation, chosen independently with
probability 12 ). For a given permutation σ on {1, . . . , n}, consider the sequence
{σ(1), σ(2), . . . , σ(n)} and denote by Xσ the indicator of the event that all the
edges (σ(i), σ(i+ 1)) appear in T with this orientation. Because the orientation
of different edges is chosen independently,

E [Xσ] = P[(σ(i), σ(i + 1)) ∈ T for i = 1, 2, . . . , n − 1] =
1

2n−1 .

The total number of Hamiltonian paths X equals the sum of these indicator
variables over all potential Hamiltonian paths, i.e. permutations, and so

E [X] =
∑

σ

E [Xσ] =
n!

2n−1 .

So there is a tournament with at least n!
2n−1 Hamiltonian paths. 2
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3.3 Splitting Graphs

The MAXCUT problem is the following important algorithmic problem: Given
a graph G = (V,E), divide the vertex set into two classes A and B = V \ A so
that the number of edges going between A and B is maximized. This problem is
computationally hard (NP-complete). The following simple result tells us that
it is always possible to achieve at least half of the edges going between A and B.

3.3.1 Theorem. Any graph with m edges contains a bipartite subgraph with
at least m

2 edges.

Proof. Let G = (V,E), and choose a random subset T ⊆ V by inserting every
vertex into T independently with probability 12 . For a given edge e = {u, v}, let
Xe denote the indicator variable of the event that exactly one of the vertices of
e is in T . Then we have

E [Xe] = P[(u ∈ T & v /∈ T ) or (u /∈ T & v ∈ T )] = 1
4 + 1

4 = 1
2 .

If X denotes the number of edges having exactly one vertex in T , then

E [X] =
∑

e∈E

E [Xe] =
m

2
.

Thus for some T ⊆ V , there are at least m
2 edges crossing between T and V \T ,

forming a bipartite graph. 2
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Alterations

Sometimes the first attempt to find a “good” object by random construction
fails, but we prove that there exists an object which almost satisfies our con-
ditions. Often it is possible to modify it in a deterministic way so that we get
what we need.

Before we begin with examples, let us mention one simple tool which is useful
when we need to estimate the probability that a random variable exceeds its
expectation significantly.

4.0.2 Lemma (Markov’s inequality). If X is a non-negative random vari-
able and a > 0, then

P[X ≥ a] ≤ E [X]

a
.

Proof. If X is non-negative, then

E [X] ≥ a · P[X ≥ a] .

2

4.1 Independent Sets

4.1.1 Definition (Independence number). For a graph G, α(G) denotes
the size of the largest independent set in G (a set of vertices such that no two
of them are joined by an edge).

The independence number of a graph is one of its basic parameters. We
would like to know how it depends on the number of edges in the graph; speci-
fically, how small the independence number can be for a given average degree.

4.1.2 Theorem (A weak Turán theorem). If n is the number of vertices
of G, m is the number of edges, and d = 2m

n ≥ 1 is the average degree, then

α(G) ≥ n

2d
.
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Note. By Turán’s theorem, we actually have α(G) ≥ n
d+1 , and this is the best

possible in general. For d integral, the extremal graph is a union of disjoint
cliques of size d + 1.

Proof. First, let us select a random subset of vertices S ⊆ V in such a way
that we insert every vertex into S independently with probability p (we will
choose a suitable value of p later). If X denotes the size of S and Y denotes the
number of edges in G[S] (the subgraph induced by S), then

E [X] = np

(this follows immediately by the method of indicators; see Section 3.1) and

E [Y ] = mp2 = 1
2ndp2

(because the probability that both vertices of a given edge are in S is p2).

We get

E [X − Y ] = np(1 − 1
2dp),

so there exists S ⊆ V where the difference of the number of vertices and edges
is at least A(p) = np(1 − 1

2dp).

Now observe that we can modify S by removing one vertex from each edge
inside S. We obtain an independent set with at least A(p) vertices. It remains
to choose the value of p so as to maximize A(p); the optimal value is p = 1

d ,
which yields

A(p) =
n

2d
.

2

4.2 High Girth and High Chromatic Number

Now we turn to a famous problem (solved by Erdős). The question was whether
the non-existence of short cycles in a graph implies that it can be colored with
a small number of colors. The answer is negative: there are graphs that do not
contain any short cycles and yet their chromatic number is arbitrarily large.

We recall that a (proper) k-coloring of a graph G is a mapping c: V (G) → [k]
such that c(u) 6= c(v) whenever {u, v} ∈ E(G), and the chromatic number1 of
G, denoted by χ(G), is the smallest k such that G has a proper k-coloring. The
girth2 of a graph G, denoted by g(G), is the length of its shortest cycle.

4.2.1 Theorem. For any k, ℓ > 0, there exists a graph G such that χ(G) > k
and g(G) > ℓ.

Proof. Set ε = 1
2ℓ , p = nε−1, and consider the random graph G(n, p). First,

we estimate the number of cycles of length at most ℓ, which we denote by X.

1chromatic number=barevnost
2girth= obvod
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Since the number of potential cycles of length i is 12(i− 1)!
(n

i

) ≤ ni and each of
them is present with probability pi, we get

E [X] ≤
ℓ
∑

i=3

nipi =
ℓ
∑

i=3

nεi.

Because nεi = o(n) for all i ≤ ℓ, E [X] = o(n). If we choose n so large that
E [X] < n

4 , we get by the Markov inequality

P
[

X ≥ n
2

]

< 1
2 .

Now we estimate the chromatic number of G(n, p) by means of its indepen-
dence number. If we set a = ⌈3p ln n⌉, we have

P[α(G(n, p)) ≥ a] ≤
(

n

a

)

(1 − p)(
a
2) ≤ nae−p(a

2) = e(lnn−p(a−1)/2)a,

which tends to zero as n → ∞. Thus again, for n sufficiently large, we have

P[α(G(n, p)) ≥ a] < 1
2 .

Consequently, there exists a graph G with X < n
2 and α(G) < a. If we

remove one vertex from each of the X short cycles, at least n
2 vertices remain

and we get a graph G∗ with g(G∗) > ℓ and α(G∗) < a. Since in any proper
coloring of G∗, the color classes are independent sets of size at most a − 1,

χ(G∗) ≥ n/2

a − 1
≥ pn

6 ln n
=

nε

6 ln n
.

It remains only to choose n sufficiently large so that χ(G∗) > k. 2
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The Second Moment

5.1 Variance and the Chebyshev Inequality

Besides the expectation, the other essential characteristic of a random varia-
ble is the variance.1 It describes how much the variable fluctuates around its
expectation. (For a constant random variable, the variance is zero.)

5.1.1 Definition. The variance of a real random variable X is

Var [X] = E
[

(X −E [X])2
]

= E
[

X2
]

− (E [X])2.

(The first equality is a definition, and the second one follows by an easy com-
putation.) The standard deviation2 of X is σ =

√

Var [X].

It might seem more natural to measure the deviation of X from the ex-
pectation as E [|X −E [X] |], but this quantity is much harder to compute and,
because of the absolute value, behaves much less nicely than Var [X].

Unlike the expectation, the variance is not a linear operator. If we want to
calculate the variance of a sum of random variables, we need to know something
about their pairwise dependence.

5.1.2 Definition. The covariance3 of two random variables is

Cov [X,Y ] = E [(X −E [X])(Y −E [Y ])] = E [XY ] −E [X]E [Y ] .

5.1.3 Lemma. The variance of a sum of random variables is equal to

Var

[ n
∑

i=1

Xi

]

=
n
∑

i=1

Var [Xi] +
∑

i6=j

Cov [Xi,Xj ].

Proof.

Var

[ n
∑

i=1

Xi

]

= E

[ n
∑

i=1

Xi

n
∑

j=1

Xj

]

−E
[ n
∑

i=1

Xi

]

E

[ n
∑

j=1

Xj

]

=

1variance= rozptyl
2standard deviation= směrodatná odchylka
3covariance=kovariance
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=
n
∑

i=1

E
[

X2i

]

+
∑

i6=j

E [XiXj ] −
n
∑

i=1

(E [Xi])
2 −

∑

i6=j

E [Xi]E [Xj ] =

=
n
∑

i=1

Var [Xi] +
∑

i6=j

Cov [Xi,Xj ].

2

Note. If X1, . . . ,Xn are independent, the covariance of each pair is 0. In this
case, the variance of X can be calculated as the sum of variances of the Xi. On
the other hand, Cov [X,Y ] = 0 does not imply independence of X and Y !

Once we know the variance, we can apply the Chebyshev inequality4 to
estimate the probability that a random variable deviates from its expectation
at least by a given number.

5.1.4 Lemma (Chebyshev inequality). Let X be a random variable with
a finite variance. Then for any t > 0

P[|X −E [X] | ≥ t] ≤ Var [X]

t2
.

Proof.
Var [X] = E

[

(X −E [X])2
]

≥ t2 P[|X −E [X] | ≥ t] .

2

This simple tool gives the best possible result when X is equal to µ with
probability p and equal to µ ± t with probability 1−p

2 . In Chapter 7, we will
examine stronger methods giving better bounds for certain classes of random
variables. In this section, though, the Chebyshev inequality will be sufficient.

5.2 Estimating the Middle Binomial Coefficient

Among the binomial coefficients
(2m

k

)

, k = 0, 1, . . . , 2m,
(2m

m

)

is the largest and
it often appears in various formulas (e.g. in the Catalan numbers, which count
binary trees and many other things). The second moment method provides a
simple way of bounding

(2m
m

)

from below. There are several other approaches,
some of them yielding much more precise estimates, but the simple trick with
the Chebyshev inequality gives the correct order of magnitude.

5.2.1 Proposition. For all m ≥ 1, we have
(2m

m

) ≥ 22m/(4
√

m+2).

Proof. Consider the random variable X = X1 + X2 + · · · + X2m, where the
Xi are independent and each of them attains values 0 and 1 with probability 12 .
We have E [X] = m and Var [X] = m

2 . The Chebyshev inequality with t =
√

m
gives

P
[|X − m| <

√
m
] ≥ 1

2
.

4Chebyshev inequality=Čebyševova nerovnost
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The probability of X attaining a specific value m + k, where |k| <
√

m, is
( 2m
m+k

)

2−2m ≤ (2m
m

)

2−2m (because
(2m

m

)

is the largest binomial coefficient). So
we have

1

2
≤

∑

|k|<√
m

P[X = m + k] ≤ (2
√

m + 1)

(

2m

m

)

2−2m

and the proposition follows. 2

5.3 Threshold Functions

Now we return to random graphs and we consider the following question: What
is the probability that G(n, p) contains a triangle? Note that this is a monotone
property; that means, if it holds for a graph G and G ⊂ H, it holds for H
as well. It is natural to expect that for very small p, G(n, p) is almost surely
triangle-free, whereas for large p, the appearance of a triangle is very likely.

Let T denote the number of triangles in G(n, p). For a given triple of vertices,
the probability that they form a triangle is p3. By linearity of expectation, the
expected number of triangles is

E [T ] =

(

n

3

)

p3

which approaches zero if p(n) << 1
n (the notation f(n) << g(n) is equivalent

to f(n) = o(g(n)) and f(n) >> g(n) means g(n) = o(f(n))). Therefore, the
probability that G(n, p(n)) contains a triangle tends to zero for p(n) = o( 1n).

On the other hand, let us suppose that p(n) >> 1
n . Then the expected

number of triangles goes to infinity with increasing n, yet this does not imply
that G(n, p) contains a triangle almost surely! It might be the case that there
are a few graphs abounding with triangles (and boosting the expected value)
while with a large probability the number of triangles is zero. This can also be
illustrated with the following real-life scenario.

Example: fire insurance. The annual cost of insurance against fire, per hou-
sehold, is increasing. This reflects the growing damage inflicted by fire every
year to an average household. But does this mean that the probability of a
fire accident is rising, or even that in the limit, almost every household will
be stricken by fire every year? Hardly. The rise in the expected damage costs
is due to a few fire accidents every year which, however, are getting more and
more expensive.

Fortunately, our triangles do not behave as erratically as fire accidents. Most
random graphs have a “typical” number of triangles which is relatively close
to the expectation. It is exactly the second moment method that allows us to
capture this property and prove that if the expected number of triangles is
sufficiently large, the random graph contains some triangle almost surely.

5.3.1 Lemma. Consider a sequence X1,X2, . . . of non-negative random varia-
bles such that

lim
n→∞

Var [Xn]

(E [Xn])2
= 0.
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Then
lim

n→∞
P[Xn > 0] = 1.

Proof. We choose t = E [Xn] in the Chebyshev inequality:

P[|Xn −E [Xn] | ≥ E [Xn]] ≤ Var [Xn]

(E [Xn])2

and we get

lim
n→∞

P[Xn ≤ 0] ≤ lim
n→∞

Var [Xn]

(E [Xn])2
= 0.

2

Thus we need to estimate the variance of the number of triangles in G(n, p).
We have T =

∑

Ti where T1, T2, . . . are indicator variables for all the
(n
3

)

possible
triangles in G(n, p). The variance of a sum of random variables is

Var [T ] =
∑

i

Var [Ti] +
∑

i6=j

Cov [Ti, Tj ].

For every triangle

Var [Ti] ≤ E
[

T 2i

]

= p3,

and for a pair of triangles sharing an edge

Cov [Ti, Tj ] ≤ E [TiTj ] = p5,

since TiTj is the indicator variable of the appearance of 5 fixed edges.
The indicator variables corresponding to edge-disjoint triangles are inde-

pendent and then the covariance is zero. So we only sum up over the pairs of
triangles sharing an edge; the number of such (ordered) pairs is 12

(n
4

)

. In total,
we get

Var [T ] ≤
(

n

3

)

p3 + 12

(

n

4

)

p5 ≤ n3p3 + n4p5

Var [T ]

(E [T ])2
≤ n3p3 + n4p5

(
(n
3

)

p3)2
= O

(

1

n3p3
+

1

n2p

)

,

which tends to zero if p(n) >> 1
n . Lemma 5.3.1 implies that the probability

that G(n, p) contains a triangle approaches 1 as n → ∞.
As the reader can observe, the transition between random graphs that con-

tain a triangle almost never or almost always is quite sharp. In order to describe
this phenomenon more generally, Erdős and Rényi introduced the notion of a
threshold function.

5.3.2 Definition. A function r: N → R is a threshold function for a mo-
notone graph property A, if for any p: N→ [0, 1]

• p(n) = o(r(n)) ⇒ limn→∞ P[A holds for G(n, p(n))] = 0

• r(n) = o(p(n)) ⇒ limn→∞ P[A holds for G(n, p(n))] = 1
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(a property A ismonotone if for any two graphs G and H with V (H) = V (G),
E(H) ⊆ E(G), and H having property A, G has property A as well).

Note that a threshold function may not exist, and if it exists, it is not
unique. For our property “G(n, p) contains a triangle”, the threshold function
is r(n) = 1

n , but r(n) = c
n (for any c > 0) could serve as well.

More generally, we can study the threshold functions for the appearance of
other subgraphs (not necessarily induced; the question of induced subgraphs is
much more difficult). It turns out that our approach can be extended to any
subgraph H that is balanced.

5.3.3 Definition. Let H be a graph with v vertices and e edges. We define the
density of H as

ρ(H) =
e

v
.

We call H balanced if no subgraph of H has strictly greater density than H
itself.

5.3.4 Theorem. Let H be a balanced graph with density ρ. Then

r(n) = n−1/ρ

is a threshold function for the event that H is a subgraph of G(n, p).

Proof. Let H have v vertices and e edges, ρ = e
v . Denote the vertices of

H by {a1, a2, . . . , av}. For any ordered v-tuple β = (b1, b2, . . . , bv) of distinct
vertices b1, . . . , bv ∈ V (G(n, p)), let Aβ denote the event that G(n, p) contains an
appropriately ordered copy of H on (b1, . . . , bv). That is, Aβ occurs if {bi, bj} ∈
E(G(n, p)) whenever {ai, aj} ∈ E(H); in other words, whenever the mapping
ai 7→ bi is a graph homomorphism.

Let Xβ denote the indicator variable corresponding to Aβ and let X =
∑

β Xβ be the sum over all the ordered v-tuples β. Note that due to the possible
symmetries of H, some copies of H may be counted repeatedly, and so X is not
exactly the number of copies of H in G(n, p). However, the conditions X = 0
and X > 0 are equivalent to the absence and appearance of H in G(n, p).

The probability of Aβ is pe. By linearity of expectation,

E [X] =
∑

β

P[Aβ] = Θ(nvpe)

(note that v and e are constants, while p is a function of n).
If p(n) << n−v/e, then

lim
n→∞

E [X] = 0,

which completes the first part of the proof.
Now assume p(n) >> n−v/e and apply the second moment method:

Var [X] =
∑

β

Var [Xβ ] +
∑

β 6=γ

Cov [Xβ,Xγ ].
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Note that Var [Xβ] = Cov [Xβ,Xβ ], so we can also write

Var [X] =
∑

β,γ

Cov [Xβ,Xγ ].

The covariances are non-zero only for the pairs of copies that share some
edges. Let β and γ share t ≥ 2 vertices; then the two copies of H have at most
tρ edges in common (because H is balanced), and their union contains at least
2e − tρ edges. Thus

Cov [Xβ,Xγ ] ≤ E [XβXγ ] ≤ p2e−tρ.

The number of pairs β, γ sharing t vertices is O(n2v−t), because we can
choose a set of 2v− t vertices in

( n
2v−t

)

ways and there are only constantly many
ways to choose β and γ from this set (since H is fixed and so its size of H is a
constant). For a fixed t, we get

∑

|β∩γ|=t

Cov [Xβ,Xγ ] = O(n2v−t p2e−tρ) = O((nvpe)2−t/v).

For the variance of X, we get

Var [X] = O

( v
∑

t=2

(nvpe)2−t/v
)

and

lim
n→∞

Var [X]

(E [X])2
= lim

n→∞
O

( v
∑

t=2

(nvpe)−t/v
)

= 0

since limn→∞ nvpe = ∞. This completes the second part of the proof because
by Lemma 5.3.1,

lim
n→∞P[X > 0] = 1

and there is almost always a copy of H in G(n, p). 2

The question of a general subgraph H was solved by Erdős and Rényi: The
threshold function for H is determined by the subgraph H ′ ⊂ H with the
maximum density. We give here only the result without a proof.

5.3.5 Theorem. Let H be a graph and H ′ ⊂ H a subgraph of H with the
maximum density. Then

r(n) = n−1/ρ(H′)

is a threshold function for the event that H is a subgraph of G(n, p).

5.4 The Clique Number

Now we consider the clique number of a random graph. For simplicity, suppose
that the probability of each edge is p = 1

2 . Let us choose a number k and count
the number of cliques of size k. For each set S of k vertices, let XS denote
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the indicator variable of the event “S is a clique”. Then X =
∑

|S|=k XS is the
number of k-cliques in the graph. The expected number of k-cliques is

E [X] =
∑

|S|=k

E [XS ] =

(

n

k

)

2−(k
2).

This function drops below 1 approximately at k = 2 log2 n and, indeed, this is
the typical size of the largest clique in G(n, 1/2).

5.4.1 Lemma.
lim

n→∞
P[ω(G(n, 1/2)) > 2 log2 n] = 0.

Proof. We set k(n) = ⌈2 log2 n⌉ and calculate the average number of cliques of
this size:

E [X] =

(

n

k

)

2−(k
2) ≤ (2k/2)k

k!
2−k(k−1)/2 =

2k/2

k!

which tends to 0 as n → ∞. Therefore

lim
n→∞

P[ω(G(n, 1/2)) > 2 log2 n] = 0.

2

However, it is more challenging to argue that there will almost always be a
clique of size near the threshold of 2 log2 n. We prove the following result.

5.4.2 Theorem. Let k(n) be a function such that

lim
n→∞

(

n

k(n)

)

2−(k(n)
2 ) = ∞.

Then
lim

n→∞
P[ω(G(n, 1/2)) ≥ k(n)] = 1.

Proof. Here the calculations are somewhat more demanding than usual. For

brevity, let us write E(n, k) =
(n
k

)

2−(k
2). First we note that we may assume n

to be sufficiently large and

3
2 log2 n ≤ k < 2 log2 n

(where 32 can be replaced by any constant smaller than 2). As for the second
inequality, we already know that E(n, 2 log2 n) → 0. For the first inequality,

we have log2E(n, k) ≥ log2

[

(n
k )k2−k2/2

]

= k log2 n − k log2 k − k2

2 , and so

log2E(n, 32 log2 n) ≥ 3
2 log22 n − o(log2 n) − 9

8 log22 n → ∞ as n → ∞.
For convenience, we also suppose that k = k(n) is even.
Let X =

∑

|S|=k(n)XS denote the number of cliques of size k(n) in G(n, 1/2).
The condition on k(n) guarantees that limn→∞E [X] = ∞. It remains to esti-
mate the variance of X:

Var [X] =
∑

|S|=|T |=k

Cov [XS ,XT ]
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(note that this includes the terms where S = T , which are equal to Var [XT ]).

The variables XS ,XT are independent whenever S and T share at most one
vertex (and therefore the corresponding cliques have no edges in common). So
we are interested only in those pairs S, T with |S ∩ T | ≥ 2, and we can write

Var [X] =
k
∑

t=2

C(t),

where

C(t) =
∑

|S∩T |=t

Cov [XS ,XT ].

For a fixed t = |S∩T |, the cliques on S and T have 2
(k
2

)− (t2
)

edges in total,
so we have

Cov [XS ,XT ] ≤ E [XSXT ] = 2(t
2)−2(

k
2)

and since a pair of subsets (S, T ) with |S| = |T | = k and |S ∩ T | = t can be
chosen in

(n
k

)(k
t

)(n−k
k−t

)

ways,

C(t) ≤
(

n

k

)(

k

t

)(

n − k

k − t

)

2(t
2)−2(

k
2).

We need to prove that

Var [X]

(E [X])2
=

k
∑

t=2

C(t)

(E [X])2
→ 0

(see Lemma 5.3.1). We split the sum over t into two ranges.

In the first range, 2 ≤ t ≤ k
2 , we show that the sum goes to 0 for k < 2 log2 n.

When dealing with a product of several binomial coefficients, it is often a good
idea to expand them, as many terms usually cancel out or can be matched
conveniently. We have

C(t)

(E [X])2
≤

(k
t

)(n−k
k−t

)

(n
k

) 2(t
2)

≤ kt

t! ·
(n−k)(n−k−1)···(n−2k+t+1)

(k−t)! · k!
n(n−1)···(n−k+1) · 2(t

2)

≤ k2t · 1
n(n−1)···(n−t+1)·t! · 2t2/2 ≤ k2tn−t2t2/2

≤ k2t(2−k/2)t2t2/2 ≤ (k22−k/22t/2)t.

Since t ≤ k
2 , the expression in parentheses is at most k22−k/4 = o(1). We can

thus bound
∑k/2

t=2 C(t)/(E [X])2 by the sum of the geometric series,
∑∞

t=2 qt,
with q = k22−k/4 = o(1) and so the sum tends to 0.

For the second range, k
2 < t ≤ k, we show that

∑k
t=k/2 C(t)/E [X] = o(1) for

k ≥ 3
2 log2 n. Consequently, since E [X] → ∞ by the condition in the theorem,
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we have
∑k

t=k/2 C(t)/(E [X])2 → 0 as well. This time we can afford to bound
the binomial coefficients quite roughly:

C(t)

E [X]
≤

(

k

t

)(

n − k

k − t

)

2(t
2)−(k

2) ≤
(

k

k − t

)(

n

k − t

)

2(t
2)−(k

2)

≤ kk−tnk−t 2(t
2−k2−t+k)/2

= (kn)k−t 2−(k−t)(k+t−1)/2 = (kn2−(k+t−1)/2)k−t

≤ (2log2 k+(2/3)k−(k+t−1)/2)k−t

≤ (2log2 k+(2/3)k−(3/4)k)k−t

as t > k
2 . The expression in parentheses is o(1). Bounding by a geometric series

again, it follows that
∑k

t=k/2 C(t)/E [X] → 0 as claimed. Altogether we have

proved limn→∞ Var [X] /(E [X])2 = 0. 2

Remark. If we choose k(n) = (2 − ε) log2 n, the condition of the theorem
holds for any ε > 0. This means that the clique number ω(G(n, 1/2)) almost
always lies between (2 − ε) log2 n and 2 log2 n. However, the concentration of
the clique number is even stronger. In 1976, Bollobás, Erdős and Matula proved
that there exists a function k(n) such that

lim
n→∞

P[k(n) ≤ ω(G(n, 1/2)) ≤ k(n) + 1] = 1.
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The Lovász Local Lemma

6.1 Statement and Proof

The typical goal of the probabilistic method is to prove that the probability that
nothing “bad” happens is greater than zero. Usually, we have a collection of bad
events A1, A2, . . . , An that we are trying to avoid. (These may be, for example,
the occurrences of a monochromatic edge in a hypergraph, as in Theorem 2.2.4.)
If the sum of their probabilities

∑

P[Ai] is strictly less than 1, then clearly there
is a positive probability that none of them occurs. However, in many cases this
approach is not powerful enough, because the sum of probabilities of the bad
events

∑

P[Ai] may be substantially larger than the probability of their union
P[
⋃

Ai].
One case where we can do better is when the events A1, . . . , An are indepen-

dent (and non-trivial). Then their complements are independent as well, and
we have

P
[

A1 ∩ A2 ∩ . . . ∩ An

]

= P
[

A1
]

P
[

A2
]

· · ·P
[

An

]

> 0

even though the probabilities P[Ai] can be very close to 1 and their sum can
be arbitrarily large.

It is natural to expect that something similar holds even if the events are not
entirely independent. The following definitions conveniently express “limited
dependence” of events using a directed graph.

6.1.1 Definition. An event A is independent of events B1, . . . , Bk if for
any nonempty J ⊆ [k],

P

[

A ∩
⋂

j∈J

Bj

]

= P[A] P

[

⋂

j∈J

Bj

]

.

6.1.2 Definition. Let A1, A2, . . . , An be events in a probability space. A direc-
ted graph D = (V,E) with V = [n] is a dependency digraph for A1, . . . , An

if each event Ai is independent of all the events Aj with (i, j) 6∈ E.

Note that a dependency digraph need not be determined uniquely.
The local lemma, discovered by Lovász, is a powerful tool which allows us

to exclude all bad events, provided that their probabilities are relatively small
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and their dependency digraph does not have too many edges. We begin with a
simple symmetric form of the local lemma, the one used most often.

6.1.3 Lemma (Symmetric Lovász Local Lemma). Let A1, . . . , An be
events such that P[Ai] ≤ p for all i and all outdegrees in a dependency di-
graph of the Ai are at most d; that is, each Ai is independent of all but at most
d of the other Aj . If ep(d + 1) ≤ 1 (where e = 2.71828 . . . is the basis of natural
logarithms), then

P

[ n
⋂

i=1

Ai

]

> 0.

If some of the events Ai have probability considerably larger than the others,
then the following general version can be useful:

6.1.4 Lemma (Lovász Local Lemma). Let A1, A2, . . . , An be events, D =
(V,E) their dependency digraph, and xi ∈ [0, 1) real numbers assigned to the
events, in such a way that

P[Ai] ≤ xi

∏

(i,j)∈E

(1 − xj).

Then

P

[ n
⋂

i=1

Ai

]

≥
n
∏

i=1

(1 − xi) > 0.

If all the P[Ai] are below 1
6 , say, then a good choice in applications is usually

xi = 3P[Ai] (the exact value 3 is not important). Then it is easy to show that if
∑

j: (i,j)∈E P[Aj ] ≤ 1
6 for all i, then the assumptions of the Lovász Local Lemma

hold.
In the rest of the section, we prove both versions of the local lemma. It seems

that at first reading, the proof does not give much insight why the lemma holds.
The reader not particularly interested in the proof may safely continue with the
examples in the next sections and perhaps return to the proof later.

Proof of Lemma 6.1.4. The complementary events Ai have positive probabi-
lities but we want them all to occur simultaneously. This would be impossible if
the occurrence of a combination of Aj forced some other Ai to hold. Therefore,
we need to bound the probability of Ai on the condition of the other events not
occurring , and this is where the parameters xi come into play. First we prove
that for any subset S ⊂ {1, . . . , n} and i /∈ S

P

[

Ai

∣

∣

∣

∣

⋂

j∈S

Aj

]

≤ xi.

We proceed by induction on the size of S. For S = ∅, the statement follows
directly from the assumption of the lemma:

P[Ai] ≤ xi

∏

(i,j)∈E

(1 − xj) ≤ xi.
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Now suppose it holds for any S′, |S′| < |S| and set S1 = {j ∈ S: (i, j) ∈
E}, S2 = S \ S1. We can assume S1 6= ∅, for otherwise, Ai is independent of
⋂

j∈S Aj and the statement follows trivially. We have

P

[

Ai

∣

∣

∣

∣

⋂

j∈S

Aj

]

=
P
[

Ai ∩
⋂

j∈S1 Aj

∣

∣

∣

⋂

l∈S2 Al

]

P
[

⋂

j∈S1 Aj

∣

∣

∣

⋂

l∈S2 Al

]

Since Ai is independent of the events {Al: l ∈ S2}, we can bound the numerator
as follows:

P

[

Ai ∩
⋂

j∈S1

Aj

∣

∣

∣

∣

⋂

l∈S2

Al

]

≤ P

[

Ai

∣

∣

∣

∣

⋂

l∈S2

Al

]

= P[Ai] ≤ xi

∏

(i,j)∈E

(1 − xj).

To bound the denominator, suppose S1 = {j1, . . . , jr} and use the induction
hypothesis:

P

[

Aj1 ∩ · · · ∩ Ajr

∣

∣

∣

∣

⋂

l∈S2

Al

]

= P

[

Aj1

∣

∣

∣

∣

⋂

l∈S2

Al

]

P

[

Aj2

∣

∣

∣

∣

Aj1 ∩
⋂

l∈S2

Al

]

· · · × P

[

Ajr

∣

∣

∣

∣

Aj1 ∩ · · · ∩ Ajr−1 ∩
⋂

l∈S2

Al

]

≥ (1 − xj1)(1 − xj2) · · · (1 − xjr)

≥
∏

(i,j)∈E

(1 − xj).

We conclude that P
[

Ai|
⋂

j∈S Aj

]

≤ xi and now the lemma follows easily, be-
cause

P

[ n
⋂

i=1

Ai

]

= P
[

A1
]

P
[

A2
∣

∣

∣A1
]

· · ·P
[

An

∣

∣

∣A1 ∩ · · · ∩ An−1
]

≥
n
∏

i=1

(1 − xi).

2

Proof of the symmetric version (Lemma 6.1.3). For d = 0 the events are
mutually independent and the result follows easily. Otherwise set xi = 1

d+1 < 1.
In the dependency digraph, the outdegree of any vertex is at most d, so

xi

∏

(i,j)∈E

(1 − xj) ≥
1

d + 1

(

1 − 1

d + 1

)d

≥ 1

e(d + 1)
≥ p

and we can apply the general local lemma. 2

Algorithmic remark. In the basic probabilistic method, we usually prove that
almost all of the considered objects are good. So if we want to find a good object,
we can select an object at random, and we have a very good chance of selecting a
good one (of course, verifying that an object is good can still be difficult, but this
is another matter). In contrast, the Lovász Local Lemma guarantees that the
probability of avoiding all bad events is positive, but this probability is typically
very small! For example, if A1, . . . , An are independent events, with probability
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1
3 each, say, in which case the Local Lemma applies, then the probability of none
Ai occurring is only (23)

n. So good objects guaranteed by the Local Lemma can
be extremely rare. Nevertheless, algorithmic versions of the Local Lemma, where
a good object can be found efficiently, are known; the first one, for a particular
application, was discovered by Beck, and for quite general recent results the
reader may consult

M. Molloy, B. Reed: Further algorithmic aspects of the Local
Lemma, Proc. of the 30th ACM Symposium of Theory of Compu-
ting, 1998, pages 524–530.

Now we present several combinatorial results which can be obtained with
the help of the Local Lemma.

6.2 Hypergraph Coloring Again

In section 2.2, we proved that any k-uniform hypergraph with less than 2k−1

edges is 2-colorable. By applying the Local Lemma, we prove a similar result
which holds for a hypergraph with arbitrarily many edges provided that they
do not intersect too much.

6.2.1 Theorem. Let H be a hypergraph in which every edge has at least k
vertices and intersects at most d other edges. If e(d + 1) ≤ 2k−1, then H is
2-colorable.

Proof. Let us color the vertices of H independently red or blue, with probability
1
2 . For every edge f , let Af denote the event that f is monochromatic. As any
edge has at least k elements, the probability of Af is at most p = 21−k. Clearly,
the event Af is independent of all Ag but those (at most d) events where f
intersects g. Since ep(d + 1) ≤ 1, we can use the Local Lemma, which implies
that there is a non-zero probability that no edge is monochromatic. 2

6.3 Directed Cycles

6.3.1 Theorem. Let D = (V,E) be a directed graph with minimum outdegree
δ and maximum indegree ∆. Then for any k ∈ N such that

k ≤ δ

1 + ln(1 + δ∆)
,

D contains a directed cycle of length divisible by k.

Proof. First we construct a subgraph D′ = (V,E′) of D where every outdegree
is exactly δ. It suffices to consider vertices one by one and for each of them
delete all but δ outgoing edges. Obviously, it suffices to find the desired cycle
in D′.

Let f : V → {0, 1, . . . , k − 1} be a random coloring obtained by choosing
f(v) for each v ∈ V independently and uniformly. Let N+(v) denote the set of
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vertices {w: (v,w) ∈ E′} and Av the event that no vertex in N+(v) is colored
by f(v) + 1 (mod k).

The probability of Av is p = (1− 1
k )δ . We claim that each Av is independent

of all the events Aw with N+(v) ∩ (N+(w) ∪ {w}) = ∅. That is, w is not a
successor of v and w and v have no common successor:

v

6= w 6= w 6= w

6= w

. . .

could be w

Note that v may be a successor of w (as indicated by the dashed arrow). In this
case, the independence is not so obvious, but it still holds: Even if the color is
fixed for all vertices except for N+(v) and it is chosen randomly on N+(v), the
probability of Av is still (1 − 1

k )δ.
The number d of vertices w not satisfying the above conditions is at most

δ + δ(∆ − 1) = δ∆. Hence

ep(d + 1) ≤ e(1 − 1

k
)δ(δ∆ + 1) ≤ e1−δ/k(δ∆ + 1) ≤ 1,

and by the Local Lemma, there is a coloring such that for every v ∈ V , there is
a w ∈ N+(v) such that f(w) = f(v)+1 (mod k). Now starting at any vertex v0,
we can generate a sequence of vertices v0, v1, v2, . . . such that (vi, vi+1) ∈ E′ and
f(vi+1) = f(vi) + 1 (mod k), until we find a directed cycle in D′. The coloring
scheme guarantees that the length of the cycle is divisible by k. 2

6.4 Ridiculous Injections

This is a silly example which, nonetheless, shows how strong the Local Lemma
is, compared to an elementary probabilistic argument. Let us consider two finite
sets M and N ; |M | = m, |N | = n. We will attempt to prove by the probabilistic
method that under favorable circumstances, there exists an injective mapping
from M to N . The first result is based only on elementary probabilistic reaso-
ning, and it is also relatively weak. :–)

6.4.1 Theorem. If n >
(m
2

)

, then an injective mapping f : M → N exists.

Proof. Consider a random mapping f : M → N , where the image of each ele-
ment of M is chosen from N at random, uniformly and independently. Let Axy

denote the event that, for x, y ∈ M , f(x) = f(y). The probability of Axy is
p = 1

n . Since there are
(m
2

)

such events Axy that must be avoided in order for f
to be injective, we have

P

[

⋂

x,y∈M

Axy

]

≥ 1 −
(

m

2

)

1

n
> 0
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and therefore an injective mapping exists. 2

Now, with the Local Lemma at hand, we are ready for a substantial impro-
vement. Instead of n >

(m
2

)

, we will need only a linear number of elements!

6.4.2 Theorem. If n > 6m, then an injective mapping f : M → N exists.

Proof. Again, we define the events Axy for x 6= y as f(x) = f(y) and we observe
that p = P[Axy] < 1

6m and Axy is independent of all but the d < 2m events
Ax′y′ with {x, y}∩ {x′, y′} 6= ∅. So we have ep(d + 1) < 1 and the Local Lemma
says that

P

[

⋂

x,y∈M

Axy

]

> 0.

2

6.5 Coloring of Real Numbers

This is a problem which appeared in the original paper containing the Local
Lemma by Erdős and Lovász. They asked whether it is possible, for a given
finite set S ⊂ R, to color the real numbers with k colors in such a way that
every translation (shifted copy) of S contains all the k colors.

6.5.1 Definition. Let c:R → [k] be a coloring of the real numbers. A set
T ⊂ R is called colorful if c(T ) = [k].

6.5.2 Theorem. For any k there is m such that for any m-point set S ⊂ R,
the real numbers can be colored with k colors so that any translation of S is
colorful.

Proof. First, we prove a result about finite sets of translates.

Statement F: For any k, there exists m = m(k) such that for any
m-point S ⊂ R and finite X ⊂ R, there is a coloring c of the set
T =

⋃

x∈X(S + x) with k colors under which each translation S + x
with x ∈ X is colorful.

Let c: T → [k] be a random coloring obtained by choosing c(y) for each
y ∈ T independently and uniformly at random. For each x ∈ X, let Ax denote
the event that c(S + x) does not contain all the k colors. The probability of Ax

is at most p = k(1 − 1
k )m. Moreover, each Ax is independent of all the other

events but those Ax′ with (S + x)∩ (S + x′) 6= ∅. The number of such events is
at most d = m(m − 1). If we choose m sufficiently large so that

ep(d + 1) = ek
(

1 − 1
k

)m
(m(m − 1) + 1) ≤ 1,

then the Local Lemma implies that there is a coloring such that all the sets
S + x, x ∈ X, are colorful. Statement F is proved.
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Here it should be noted that the Local Lemma itself cannot take us any
further, because it requires that the number of events in question is finite. The
proper coloring of all real numbers can be obtained by a compactness argument
(which requires the axiom of choice).

First, we will show a weaker result by an elementary argument. (This wea-
ker result is included just for illustration and it is not needed in the proof
of Theorem 6.5.2 that will be presented later.) Let Q = {q1, q2, q3, . . .} ⊂ R
be a countable set, for example the rationals. We are going to color the set
T =

⋃

q∈Q(S + q). Let Ti =
⋃i

j=1 (S + qj). For every Ti, using Statement F
above, we fix a coloring ci: Ti → [k] such that all the sets S + qj, j ≤ i, are
colorful. We are going to define a coloring c: T → [k] by a diagonal argument.

There are finitely many ways of coloring the set S + q1, and we have the
infinite sequence (c1, c2, . . .) of colorings, so there is an infinite subsequence
(ci1 , ci2 , . . .) all of whose colorings coincide on S + q1 (and S + q1 is colorful

under them). For simpler notation, let us write c
(1)
j = cij , so we have the

infinite sequence (c
(1)
1 , c

(1)
2 , c

(1)
3 , . . .). All of these colorings, except possibly for

c
(1)
1 , are defined on S + q2, and can have only finitely many patterns there, so

we can select an infinite subsequence (c
(2)
1 , c

(2)
2 , c

(2)
3 , . . .), all of whose colorings

coincide on S + q2. Continuing in this manner, after ℓ steps, we get an infinite

sequence (c
(ℓ)
1 , c

(ℓ)
2 , . . .) whose colorings coincide on Tℓ =

⋃ℓ
i=1(S + qi) and such

that each S + qi, i = 1, 2, . . . , ℓ is colorful. Note that the coloring of Tℓ remains

fixed after the ℓth step, and each c
(r)
j , r ≥ ℓ, coincides with c

(ℓ)
1 on Tℓ.

Now we define a “diagonal” coloring c: T → [k] by letting c(x) = c
(ℓ)
1 (x),

where ℓ is the smallest index such that x ∈ Tℓ. Note that we also have c(x) =

c
(r)
1 (x) for all r such that x ∈ Tr. Since each S + qr is colorful under c

(r)
1 by the

construction, it follows that it is colorful under c as well.

Finally, we prove the existence of the desired coloring of the real numbers.
We need to recall two facts about compact topological spaces. First, if C is a
system of closed subsets in a compact space such that

⋂

C∈F C 6= ∅ for any
finite subsystem F ⊆ C, then

⋂

C∈C C 6= ∅. And second, an arbitrary Cartesian
product of compact topological spaces is compact (Tychonoff’s theorem),1 and
in particular, the space M of all mappings f :R→ [k] is compact. The topology
on this space is that of the Cartesian power [k]R; explicitly, any set of mappings
of the form

{f ∈ M : f(i) = g(i) for all i ∈ I}, (6.1)

where I ⊂ R is finite and g: I → [k] is arbitrary, is closed in M .
Coming back to our coloring problem, let Cx ⊂ M denote the set of all

colorings for which S + x is colorful. Each Cx is a finite union of sets of the
form (6.1) and so it is closed in M . Statement F implies that for any finite set
X ⊂ R,

⋂

x∈X Cx 6= ∅. From the compactness of M , we obtain the existence
of a c ∈ ⋂

x∈RCx, and such a coloring c makes all the sets S + x (x ∈ R)
colorful. 2

1Tychonoff’s theorem=Tichonovova věta (čte se s Ť)
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Strong Concentration Around the
Expectation

What is typically the maximum degree of the random graph G(n, 12)? This
maximum degree is a quite complicated random variable, and it is not even
clear how to compute its expectation. For each vertex, the expected degree is
d = 1

2 (n − 1), but this alone does not tell us much about the maximum over
all vertices. But suppose that we can show, for some suitable number t much
smaller than n, that the degree of any given vertex exceeds d+t with probability
smaller than n−2, say (as we will see later, the appropriate value of t is about
const ·√n log n ). Then we can conclude that the maximum degree is below d+t
with probability at least 1 − 1

n , i.e. almost always.

In this case, and in many other applications of the probabilistic method,
we need to bound probabilities of the form P[X ≥ E [X] + t] for some random
variable X (and usually also probabilities of negative deviations from the ex-
pectation, i.e. P[X ≤ E [X] − t]). Bounds for these probabilities are called tail
estimates.1 In other words, we want to show that X almost always lives in
the interval (E [X] − t,E [X] + t); we say that X is concentrated around its
expectation.

The Chebyshev inequality is a very general result of this type, but usu-
ally it is too weak, especially if we need to deal with many random variables
simultaneously. It tells us that

P[|X −E [X] | ≥ λσ] ≤ λ−2,

where σ =
√

Var [X] and λ ≥ 0 is a real parameter. If X is the degree of a fixed
vertex in G(n, 12), we have σ = 1

2

√
n − 1. Since the largest deviations we may

ever want to consider in this case are smaller than 12 (n− 1), λ−2 is never below
1
n , and the Chebyshev inequality is useless for the above consideration of the
maximum degree. But as we will see below, for our particular X, a much better
inequality holds, with λ−2 replaced by the exponentially small bound 2e−λ2/2.
This is already sufficient to conclude that, for example, the maximum degree
of G(n, 12 ) almost never exceeds n

2 + O(
√

n log n ).

1tail estimate=odhad pravděpodobnosti velkých odchylek
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7.1 Sum of Independent Uniform ±1 Variables

We will start with the simplest result about strong concentration, which was
mentioned in the above discussion of the maximum degree of G(n, 12). We note
that the degree of a given vertex v in G(n, 12) is the sum of the indicators of
the n − 1 potential edges incident to v. Each of these indicators attains values
0 and 1, both with probability 12 , and they are all mutually independent.

For a more convenient notation in the proof, we will deal with sums of
variables attaining values −1 and +1 instead of 0 and 1. One advantage is that
the expectation is now 0. Results for the original setting can be recovered by a
simple re-scaling.

7.1.1 Theorem. Let X1,X2, . . . ,Xn be independent random variables, each
attaining the values +1 and −1, both with probability 12 . Let X = X1 + X2 +
· · · + Xn. Then we have, for any real t ≥ 0,

P[X ≥ t] < e−t2/2σ2 and P[X ≤ −t] < e−t2/2σ2 ,

where σ =
√

Var [X] =
√

n.

This estimate is often called Chernoff’s2 inequality in the literature (al-
though Chernoff proved a more general and less handy inequality in 1958, and
the above theorem goes back to Bernstein’s paper from 1924).

Note that in this case, we can write down a formula for P[X ≥ t], which will
involve a sum of binomial coefficients. We could try to prove the inequality by
estimating the binomial coefficients suitably. But we will use an ingenious trick
from probability theory (due to Bernstein) which also works for sums of more
general random variables, where explicit formulas are not available.

Proof. We prove only the first inequality; the second one follows by symmetry.
The key steps are to consider the auxiliary random variable Y = euX , where
u > 0 is a (yet undetermined) real parameter, and to apply Markov’s inequality
to Y .

We have P[X ≥ t] = P
[

Y ≥ eut
]

. By Markov’s inequality, we obtain
P[Y ≥ q] ≤ E [Y ] /q. We calculate

E [Y ] = E
[

eu(
∑n

i=1
Xi)
]

= E

[

n
∏

i=1

euXi

]

=
n
∏

i=1

E
[

euXi

]

(by independence of the Xi)

=

(

eu + e−u

2

)n

≤ enu2/2.

The last estimate follows from the inequality (ex + e−x)/2 = cosh x ≤ ex2/2

valid for all real x (this can be established by comparing the Taylor series of
both sides). We obtain

P
[

Y ≥ eut
]

≤ E [Y ]

eut
≤ enu2/2−ut.

2Chernoff=Černov
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The last expression is minimized by setting u = t/n, which yields the value
e−t2/2n = e−t2/2σ2 . Theorem 7.1.1 is proved. 2

Combinatorial discrepancy. We show a nice application. Let X be an n-
point set, and let F be a system of subsets of X. We would like to color the points
of X red and blue, in such a way that each set of F contains approximately
the same number of red and blue points (we want a “balanced” coloring). The
discrepancy of the set system F measures how well this can be done. We assign
the value +1 to the red color and value −1 to the blue color, so that a coloring
can be regarded as a mapping χ: X → {−1, +1}. Then the imbalance of a
set S ∈ F is just χ(S) =

∑

x∈S χ(x). The discrepancy disc(F , χ) of F under
the coloring χ is maxS∈F |χ(S)|, and the discrepancy of F is the minimum of
disc(F , χ) over all χ.

If we take F = 2X (all sets), then disc(F) = n
2 . Using the Chernoff inequa-

lity, we show that the discrepancy is much smaller; namely, if the number of
sets in F is not too large, then the discrepancy is not much larger than

√
n,

7.1.2 Proposition. Let |X| = n and |F| = m. Then disc(F) ≤
√

2n ln(2m).
If the maximum size of a set in F is at most s, then disc(F) ≤

√

2s ln(2m).

Proof. Let χ: X → {−1, +1} be a random coloring, the colors of points being
chosen uniformly and independently. For any fixed set S ⊆ X, the quantity
χ(S) =

∑

x∈S χ(x) is a sum of |S| independent random ±1 variables. Theo-
rem 7.1.1 tells us that

P[|χ(S)| > t] < 2e−t2/2|S| ≤ 2e−t2/2s.

For t =
√

2s ln(2m), 2e−t2/2s becomes 1
m . Thus, with a positive probability, a

random coloring satisfies |χ(S)| ≤ t for all S ∈ F simultaneously. 2

7.2 Sums of Bounded Independent Random Variables

Estimates like that in Theorem 7.1.1 hold in much greater generality. For un-
derstanding such results, it is useful to keep in mind a marvelous result of
probability theory: the Central Limit Theorem. We remark that the following
discussion, up until Theorem 7.2.1, is not necessary for understanding the sub-
sequent results, and so a reader who does not feel at ease with continuous
distributions, say, can skip this part.

First we recall that a real random variable Z has the standard normal dis-
tribution N(0, 1) if its density is given by the function 1√

2π
e−x2/2:
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-4 -2 2 4

0.1

0.2

0.3

0.4

(so P[Z ≤ t] =
∫ t
−∞

1√
2π

e−x2/2 dx). We have E [Z] = 0 and Var [Z] = 1, and Z

is concentrated around its expectation: the probability of deviating from 0 by
more than λ is roughly proportional to e−λ2/2 for large λ.

The Central Limit Theorem asserts that if S is the sum of many independent
random variables, none of them with unreasonably large variance compared to
the others, then the normalized random variable

S −E [S]
√

Var [S]

has approximately the standard normal distribution N(0, 1). This looks like
magic, since the distributions of the summands can be rather arbitrary and
have nothing to do with the normal distribution. One simple formulation of the
Central Limit Theorem is as follows. Let X1,X2, . . . be a sequence of indepen-
dent random variables with E [Xi] = 0, let Sn =

∑n
i=1Xi, and suppose that

for all i, Var [Xi] /Var [Sn] → 0 as n → ∞. Then the distribution function of
the normalized random variable Zn = Sn/

√

Var [Sn] converges to the distribu-
tion function of N(0, 1), i.e. for any real t, P[Zn ≤ t] → P[Z ≤ t] as n → ∞.
(The condition on the Var [Xi], called Feller’s condition, can be considerably
weakened—see a probability theory textbook.)

This theorem as stated doesn’t tell us anything about the speed of the
convergence to the normal distribution, and so it cannot be used for obtaining
concrete tail estimates for sums of finitely many random variables. But it is
a useful heuristic guide, suggesting what behavior of a sum of independent
random variables we should expect. Here we state a useful and quite general
concentration result.

7.2.1 Theorem. Let X1,X2, . . . ,Xn be independent random variables, each
of them attaining values in [0, 1], let X = X1 + X2 + · · · + Xn, and let σ2 =
Var [X] =

∑n
i=1Var [Xi]. (In particular, if Xi = 1 with probability p and Xi = 0

with probability 1 − p, then Var [X] = np(1− p), and so we can use σ ≤ √
np.)

Then, for any t ≥ 0,

P[X ≥ E [X] + t] < e−t2/2(σ2+t/3) and P[X ≤ E [X] − t] < e−t2/2(σ2+t/3).

This theorem can be proved along the same lines as Theorem 7.1.1, only
the estimates become more complicated. Note that in a wide range of t, say
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up to t = σ2, the estimate is close to e−t2/2σ2 , and this is approximately the
value predicted by the approximation of the distribution of X by the appropri-
ately scaled normal distribution. For larger t, though, the correction factor t/3
gradually makes the estimate weaker than e−t2/2σ2 . Some correction like this is
actually necessary in general for these very large deviations.

Let us remark that many other estimates of this kind can be found in the
literature (associated with the names of Bernstein, Hoeffding, and some others),
and sometimes they are slightly sharper.

Randomized rounding. This is a general technique in combinatorial opti-
mization, which in many cases allows us to compute approximate solutions for
NP-hard problems. The analysis is based on Theorem 7.2.1. Here we present
one specific example: randomized rounding applied to the k-matching problem.
Let V = {v1, v2, . . . , vn} be a set and let F = {S1, S2, . . . , Sm} be a system of
subsets of V . A subsystem M ⊆ F is called a k-matching3 (or sometimes a
k-packing4) if no point of V is contained in more than k sets of M. Given V ,
F , and k, we would like to find a k-matching M with as many sets as possible.

Let A denote the n×m incidence matrix of the system F , with rows corre-
sponding to points and columns to sets; that is, aij = 1 if vi ∈ Sj and aij = 0
otherwise. Let 1 denote the (column) vector of 1’s (of appropriate length).
Then the k-matching problem for F can be expressed as the following integer
program:

max{1T x: x ∈ {0, 1}m, Ax ≤ k1}.

The correspondence to the original problem is simple: the set Sj is put into the
k-matching M exactly when xj = 1.

With the restriction x ∈ {0, 1}m, this is an NP-hard problem (since the
k-matching problems is known to be NP-hard). But efficient algorithms for
linear programming allow us to solve the linear relaxation in polynomial time:
compute an optimal solution x∗ of the linear program

max{1T x: x ∈ [0, 1]m, Ax ≤ k1}.

Let OPT ∗ = 1T x∗ denote the optimal value. We note that OPT ∗ ≥ OPT ,
where OPT is the optimal value of the integer program, i.e. the number of sets
in a largest k-matching.

In order to get an approximate solution to the k-matching problem, we want
to round each component of x∗ to 0 or 1. The idea of randomized rounding is to
use the real number x∗

j as the probability of rounding the jth component to 1.
We begin with a preliminary consideration, which does not yet quite work.

Let us define a random vector y ∈ {0, 1}m by choosing yj = 1 with probabi-
lity x∗

j and yj = 0 with probability 1−x∗
j , the choices for various j being mutu-

ally independent. By linearity of expectation, we have E
[

1T y
]

= 1T x∗ = OPT ∗

and E [(Ay)i] = (Ax∗)i ≤ k for all i. Moreover, the quantity 1T y =
∑m

j=1 yj is
the sum of 0/1 independent random variables, and the tail estimates in Theo-

3matching=párování
4packing=pakování
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rem 7.2.1 show that with high probability, its value is close to OPT ∗. Similarly,
for each i, (Ay)i is likely to be near (Ax∗)i and thus not much larger than k.

In this way, we would get a solution which is “nearly” a k-matching but
some points are typically contained in somewhat more than k sets. In order
to get an actual k-matching by the rounding procedure, we slightly lower the
probabilities of 1’s. Namely, now we set yj to 1 with probability only (1− ε

2)x
∗
j .

This works if k is sufficiently large:

7.2.2 Proposition. Let ε ∈ (0, 1] be a parameter, and let us suppose that
k ≥ 10

ε2 ln(2n + 2). Then with probability at least 12 , the vector y obtained by
the just described randomized rounding procedure defines a k-matching with
at least (1 − ε)OPT sets.

Proof. Let us write X =
∑m

j=1 yj = 1T y. First we estimate the probability
P[X < (1 − ε)OPT ∗]. We note that OPT ∗ ≥ k, since any 0/1 vector x with k
ones satisfies Ax ≤ k1. We have E [X] = (1 − ε

2 )OPT ∗ and Var [X] ≤ E [X]
(this is always true for a sum of independent random 0/1 variables). So we use
the second inequality in Theorem 7.2.1 with t = ε

2 OPT ∗ and σ2 ≤ OPT ∗. This

yields P[X < (1 − ε)OPT ∗] ≤ e−(ε
2/10)OPT ∗ ≤ e−(ε

2/10)k ≤ 1
2n+2 .

Next, we write Yi = (Ay)i and we estimate P[Yi > k] in a very similar way.
This time E [Yi] = (1− ε

2)(Ax∗)i ≤ (1− ε
2)k, and we can set t = ε

2 k and σ2 = k
in the first inequality in Theorem 7.2.1. We obtain P[Yi > k] ≤ 1

2n+2 . Therefore,

with probability at least 12 , we have Ay ≤ k1 as well as 1T y ≥ (1 − ε)OPT ∗ ≥
(1 − ε)OPT . 2

The same approach can be used for many other problems expressible as
integer programs with 0/1 variables. These include problems in VLSI design
(routing), multicommodity flows, and independent sets in hypergraphs, to name
just a few. Some recent results in this direction can be found, for example, in

A. Srinivasan: Improved approximation guarantees for packing and
covering integer programs, SIAM J. Computing 29(1999) 648–670.

7.3 A Lower Bound For the Binomial Distribution

Sometimes we need a lower bound for probabilities like P[X ≥ E [X] + t]; we
need to know that the probability of deviation t is not too small. The Cen-
tral Limit Theorem suggests that the distribution of the sum of many inde-
pendent random variables is approximately normal, and so the bounds as in
Theorems 7.1.1 and 7.2.1 should not be far from the truth. It turns out that
this is actually the case, under quite general circumstances. Such general and
precise bounds can be found in

W. Feller: Generalization of a probability limit theorem of Cramér,
Trans. Am. Math. Soc, 54:361–372, 1943.

For example, the following is an easy consequence of Feller’s results:
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7.3.1 Theorem. Let X be a sum of independent random variables, each atta-
ining values in [0, 1], and let σ =

√

Var [X] ≥ 200. Then for all t ∈ [0, σ2

100 ], we
have

P[[] X ≥ E [X] + t] ≥ ce−t2/3σ2

for a suitable constant c > 0.

Here we will prove just a counterpart of Theorem 7.1.1:

7.3.2 Proposition. For n even, let X1,X2, . . . ,Xn be independent random
variables, each attaining the values 0 and 1, both with probability 12 . Let X =
X1 + X2 + · · · + Xn. Then we have, for any integer t ∈ [0, n

8 ],

P
[

X ≥ n
2 + t

] ≥ 1
15 e−16t

2/n.

Proof. A good exercise in elementary estimates. Write n = 2m. We have

P[X ≥ m + t] = 2−2m
m
∑

j=t

(

2m

m + j

)

≥ 2−2m
2t−1
∑

j=t

(

2m

m + j

)

= 2−2m
2t−1
∑

j=t

(

2m

m

)

m

m + j
· m − 1

m + j − 1
· · · m − j + 1

m + 1

≥ 1

2
√

m

2t−1
∑

j=t

j
∏

i=1

(

1 − j

m + i

)

(using
(2m

m

) ≥ 22m/2
√

m)

≥ t

2
√

m

(

1 − 2t

m

)2t

≥ t

2
√

m
· e−8t2/m (since 1 − x ≥ e−2x for 0 ≤ x ≤ 1

2 ).

For t ≥ 1
4

√
m, the last expression is at least 18e

−16t2/n. For 0 ≤ t < 1
4

√
m, we

have P[X ≥ m + t] ≥ P
[

X ≥ m + 1
4

√
m
]

≥ 1
8e

−1/2 ≥ 1
15 . Thus, the claimed

bound holds for all t ≤ m
4 . The constants in the estimate could be improved, of

course. 2

A lower bound for discrepancy. We show that the upper bound of
O(
√

n log(2m) ) for the discrepancy of m sets on n points (Proposition 7.1.2) is
nearly the best possible in a wide range of values of m.

7.3.3 Proposition. For all m with 15n ≤ m ≤ 2n/8, there are systems of m
sets on n points with discrepancy at least Ω(

√

n ln(m/15n) ).

For m ≥ n2, say, the lower and upper bounds in Propositions 7.1.2 and
7.3.3 are the same up to a constant. For m close to n, there is a gap. It turns
out that it is the upper bound which can be improved (by a very sophisticated
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probabilistic argument). The correct bound for the maximum discrepancy of m
sets on n points, m ≥ n, is of order

√

n ln(2m/n).

Proof. Consider a random set system F = {S1, S2, . . . , Sm} on the ground set
[n], n even, where the Si are independent random subsets of [n]; that is, each
x ∈ [n] is included in Si independently with probability 12 .

Let χ: [n] → {−1, +1} be an arbitrary fixed coloring, and suppose that the
number of −1’s is a and the number of +1’s is n − a. A point x ∈ [n] with
χ(x) = 1 contributes 1 to χ(Si) if x ∈ Si and 0 if x 6∈ Si. Since x ∈ Si has
probability 1

2 , the contribution of x to χ(Si) is a random variable attaining
values 0 and 1 with probability 1

2 . Similarly, the contribution of an x with
χ(x) = −1 attains values 0 and −1 with probability 1

2 . Therefore, χ(Si) is a
sum of n independent random variables, a of them attaining values −1 and 0
with probability 12 and n− a of them attaining values 0 and 1 with probability
1
2 . Then χ(Si) + a is the sum of n independent random variables, each with
values 0 and 1. For a ≤ n

2 , we have

P[|χ(Si)| ≥ t] ≥ P[χ(Si) + a ≥ t + a] ≥ P
[

χ(Si) + a ≥ n
2 + t

]

.

By Proposition 7.3.2, the last probability is at least 1
15e

−16t2/n, provided that
t ≤ n

8 . For a > n
2 , we get the same bound by symmetry (consider the coloring

−χ). Therefore, for any of the possible 2n colorings χ, we have

P[disc(F , χ) ≤ t] ≤
(

1 − 1
15 e−16t

2/n
)m

≤ e−me−16t
2/n/15.

For t =
√

(n/16) ln(m/15n) (which is below n
8 for m ≤ 2n/8), the last expression

becomes e−n < 2−n, and we can conclude that with a positive probability, the
discrepancy of our random F is at least

√

(n/16) ln(m/15n) under any coloring
χ. 2

A deterministic bound using Hadamard matrices. Proposition 7.3.3
allows us to conclude the existence of n sets on n points with discrepancy at
least c

√
n for some constant c > 0 (can you see how?). Here we show a beautiful

deterministic argument proving this result.

We first recall the notion of an Hadamard matrix . This is an n×n matrix H
with entries +1 and −1 such that any two distinct columns are orthogonal; in
other words, we have HT H = nI, where I stands for the n×n identity matrix.
Moreover, we assume that the first row and the first column consist of all 1’s.

Hadamard matrices do not exist for every n. For example, it is clear that
for n ≥ 2, n has to be even, and with a little more effort one can see that n
must be divisible by 4 for n ≥ 4. The existence problem for Hadamard matrices
is not yet fully solved, but various constructions are known. We recall only
one simple recursive construction, providing a 2k × 2k Hadamard matrix for all
natural numbers k. Begin with the 1 × 1 matrix H0 = (1), and, having defined
a 2k−1 × 2k−1 matrix Hk−1, construct Hk from four blocks as follows:

(

Hk−1 Hk−1
Hk−1 −Hk−1

)

.
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Thus, we have

H1 =

(

1 1
1 −1

)

, H2 =











1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1











.

The orthogonality is easy to verify by induction.
Let H be a 4n× 4n Hadamard matrix. Each column except for the first one

is orthogonal to the column of all 1’s, and so the number of 1’s in it is 2n, as
well as the number of −1’s. Moreover, the ith and jth columns, 1 < i < j, are
orthogonal too, and it follows that they have exactly n common 1’s, n common
−1’s, and 2n positions where one of them has 1 and the other has −1 (check).

Let A be the (4n− 1)× (4n− 1) matrix arising from H by deleting the first
row and first column and changing the −1’s to 0’s. By the above, we find that
AT A = nI + (n − 1)J , where I is the (4n − 1) × (4n − 1) identity matrix and
J is the (4n − 1) × (4n − 1) matrix of all 1’s.

Consider the system of sets S1, S2, . . . , S4n−1 on [4n − 1], where Si has the
ith row of A as the characteristic vector. Let χ: [4n − 1] → {−1, +1} be any
coloring of the ground set, and let x ∈ {−1, +1}n be χ interpreted as the column
vector, i.e. xi = χ(i). By the definition of matrix multiplication, we have

Ax =
(

χ(S1), χ(S2), . . . , χ(S4n−1)
)T

.

Therefore,

4n−1
∑

i=1

χ(Si)
2 = ‖Ax‖2 = (Ax)T (Ax) = xT (AT A)x

= xT (nI + (n − 1)J)x = nxT Ix + (n − 1)xT Jx

= n‖x‖2 + (n − 1)

( 4n−1
∑

i=1

xi

)2

≥ n(4n − 1).

So for any χ, the average χ(Si)
2 is at least n, and there exists an i with |χ(Si)| ≥√

n. We have proved that the discrepancy of the set system {S1, . . . , S4n−1} is
at least

√
n. 2

7.4 Sums of Moderately Dependent Indicator Variables

Here we present, without a proof, a powerful tail estimate for a sum X =
X1 + · · · + Xn, where Xi attains values 0 and 1 and where some of the Xi may
be dependent, but the amount of dependence is suitably bounded.

We will need the notion of a dependency graph for a family of random
variables. Note that it is slightly different from the one used in Section 6.1 where
we considered only random events and the dependency graph was directed!

7.4.1 Definition. Families of real random variables {Xi: i ∈ A} and {Xi: i ∈
B} are mutually independent if for any choice of ai ∈ R, i ∈ A ∪ B,

P[∀i ∈ A ∪ B: Xi ≤ ai] = P[∀i ∈ A: Xi ≤ ai] P[∀i ∈ B: Xi ≤ ai] .
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7.4.2 Definition. A graph G is a dependency graph for a family of random
variables {Xi: i ∈ I} if V (G) = I, and for any two disjoint sets A,B ⊂ V
with no edges between A and B, the families {Xi: i ∈ A} and {Xi: i ∈ B} are
mutually independent.

7.4.3 Theorem (Janson–Suen inequality). Let X = X1 + · · · + Xn, where
the Xi are random variables with P[Xi = 1] = pi and P[Xi = 0] = 1 − pi. Let
E be the edge set of a dependency graph of the Xi, and define

∆ = E [X] +
∑

{i,j}∈E

pipj , δ = max
i∈[n]

∑

j: {j,i}∈E

pj.

Then for any t ≥ 0, we have

P[X ≤ E [X] − t] ≤ e−min(t
2/4∆,t/6δ).

Remarks. Note that the tail estimate is only one-sided; an exponentially
small upper bound for P[X ≥ E [X] + t] need not hold in general. The theorem
is mostly used for showing that P[X = 0] is very small, i.e. with t = E [X].

The quantity ∆ is an upper bound for Var [X]: We have

Var [X] =
n
∑

i=1

Var [Xi] +
∑

{i,j}∈E

Cov [Xi,Xj ] ,

and Var [Xi] ≤ E [Xi] and Cov [Xi,Xj ] ≤ E [XiXj ] since Xi ∈ {0, 1}. Such
estimates for Var [X] were calculated in Section 5.3 in showing that G(n, p)
almost surely contains a copy of a given graph H. Theorem 7.4.3, too, has been
developed with this application in mind.

Example. Let H = K3 be the triangle. We know from Section 5.3 that if
p = ϕ(n)

n with ϕ(n) → ∞, then P[K3 6⊆ G(n, p)] → 0 as n → ∞. Theorem 7.4.3
shows that this probability is even exponentially small in ϕ(n). To see this,

let
(

XT : T ∈ ([n]
3

)

)

be the indicators of all possible triangles that can appear

in G(n, p), and let X =
∑

T XT . We have pT = P[XT = 1] = p3. The edges
of a dependency digraph connect triangles T and T ′ sharing at least two ver-
tices. The same calculations as in Section 5.3 gives E [X] ∼ n3p3 = ϕ(n)3

and ∆ << n3p3 + n4p5 ∼ ϕ(n)3. A simple calculation also shows that
δ ∼ np3 ∼ ϕ(n)3/n2, which is very small. For t = E [X] ∼ ϕ(n)3, we have
min(t2/4∆, t/6δ) ∼ min(ϕ(n)3, n2), and so

P[X = 0] ≤ e−Ω(min(ϕ(n)
3,n2)).

A similar bound can be derived for the containment of any fixed balanced
graph H in G(n, p). Such results have been obtained earlier with the aid of
less powerful tools (Janson’s inequality dealing with the probabilities of mo-
notone events). But Theorem 7.4.3 yields similar bounds for containment of
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balanced graphs H in G(n, p) in the induced sense, with calculation very simi-
lar to the non-induced case. Such a result appears considerably harder than the
non-induced case, because of non-monotonicity, and illustrates the strength of
Theorem 7.4.3.

Balls in urns: hypergeometric distribution. In conclusion, we mention
another useful concentration result without a proof. We have N urns, labeled 1
through N , and we put m balls into m different urns at random (draws without
replacement). Some n of the urns are “distinguished”, and we let X denote the
number of balls in the distinguished urns (n,m ≤ N).

We have E [X] = nm
N and σ2 = Var [X] = nm(N−n)(N−m)

N2(N−1) ≤ nm
N = E [X].

This X can obviously be written as the sum of n indicator variables (Xi = 1
if the ith distinguished urn receives a ball), but these are not independent.
Nevertheless, it is known that the tail estimates as in Theorems 7.2.1 and 7.3.1
hold for this particular X (with σ and n as above). Knowing this can save many
desperate calculations.
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Concentration of Lipschitz Functions

8.1 Concentration on Product Spaces

We have seen that if X is a sum of many “small” independent random variables
X1,X2, . . . ,Xn, then X is strongly concentrated around its expectation. In this
chapter we present more general results, of the following type: If (Ω, Σ, P) is a
“suitable” probability space and f : Ω → R is a “nice” random variable on it,
then f is tightly concentrated around E [f ].

For example, the basic Chernoff inequality for sums of independent uniform
±1 variables (Theorem 7.1.1) can be recast as follows in this setting: We consider
the probability space {−1, 1}n with the uniform probability measure, and f is
given by f(ω) = ω1 + · · · + ωn, where ω = (ω1, . . . , ωn) ∈ {−1, 1}n. Then
P[f ≥ E [f ] + t] < e−t2/2n and P[f ≤ E [f ] − t] < e−t2/2n.

Two essential features of this example will appear in the main theorem of
this section.

• First, our probability space is a product of many (n) probability spaces;
in our case, the factors are the spaces {−1, 1} with the uniform mea-
sure. (Having n independent random variables always implicitly entails a
product space with n factors.)

• And second, the effect of each component ωi on the value of f is relatively
small: by changing the value of ωi (and keeping the values of all the other
ωj), the value of f changes by at most 2.

What is the product of probability spaces (Ω1, Σ1, P1),. . . , (Ωn, Σn, Pn)?
The elementary events of the product have the form ω = (ω1, ω2, . . . , ωn), where
ωi ∈ Ωi, and so the ground set of the product is Ω = Ω1×Ω2× · · · ×Ωn. Intui-
tively, a random ω ∈ Ω is selected by choosing each ωi at random from Ωi, all
these choices being mutually independent. If all the Ωi are finite, we can define
the product measure P on Ω simply by P[{(ω1, . . . , ωn)}] =

∏n
i=1 Pi[{ωi}]. For

infinite Ωi, the formal construction of the product measure is more sophistica-
ted, and it is usually considered in courses on measure and integration. In our
applications, we will mostly consider finite Ωi.

Now we formulate a condition on the function f . Let Ω = Ω1× · · · ×Ωn and
let f : Ω → R be a (measurable) function, i.e. a real random variable on Ω. We
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say that the ith coordinate has effect at most ci on f if |f(ω) − f(ω′)| ≤ ci

for all ω, ω′ ∈ Ω that differ only in the ith coordinate. Here is the promised
concentration result:

8.1.1 Theorem (Concentration on product spaces). Let (Ω, Σ, P) be the
product of probability spaces (Ωi, Σi, Pi), i = 1, 2, . . . , n, and let f : Ω → R be
a function such that the ith coordinate has effect at most ci. Then

P[f ≥ E [f ] + t] ≤ e−t2/2σ2 and P[f ≤ E [f ] − t] ≤ e−t2/2σ2 ,

where σ2 =
∑n

i=1 c
2
i . In particular, if each coordinate has effect at most 1, then

P[f ≥ E [f ] + t] ≤ e−t2/2n and P[f ≤ E [f ] − t] ≤ e−t2/2n.

Thus, if no coordinate has effect more than 1, then f is concentrated at
least as much as the sum of n independent random ±1 variables.

Before we consider a more general version with Lipschitz functions and a
proof, let us see a few applications of this powerful result.

The size of the image of a random function. Let g: [n] → [n] be a random
function, all the nn possible functions being equally likely, and let X be the
number of elements in the image, X = |g([n])|. By the method of indicators,
one can calculate that E [X] = n − n(1 − 1

n)n ≈ n(1 − 1
e ), but we do not need

to know E [X] in order to derive a strong concentration result for X.
Our X is a function on the product space [n]n (the ith coordinate is the

value g(i)). By changing g(i) and keeping all other g(j) fixed, the size of the
image changes by at most 1. Theorem 8.1.1 thus implies that X is strongly
concentrated around E [X]: P[|X −E [X] | ≥ t] ≤ 2e−t2/2n.

Concentration of the chromatic number. Let us consider the probability
space G(n, p) of n-vertex random graphs, for some given n and p. Let χ be
the function on this probability space assigning to each graph its chromatic
number. It is not at all easy to determine E [χ] (it is known quite precisely for
a wide range of p, but the proofs are fairly sophisticated). But we do not need
to know the expectation in order to apply Theorem 8.1.1!

To use Theorem 8.1.1, we need to consider G(n, p) as a product space. There
is a natural product structure corresponding to the potential edges; there are

(n
2

)

factors Ωe, where each Ωe has two elements corresponding to the absence and
presence of the edge e in the graph. Clearly, adding or deleting an edge influences
the chromatic number by at most 1, and so each of the

(n
2

)

coordinates has effect
at most 1 on χ. Theorem 8.1.1 applies, but it doesn’t yield anything interesting:
the n in it would be

(n
2

)

here, and since χ is in the range [1, n], the concentration

result is rather useless (the bound is e−t2/2(n
2) ≥ e−n2/n(n−1) ≥ e−2, so it never

tends to 0).
The trick is to group the edges into larger chunks. Let v1, v2, . . . , vn be

the vertices enumerated in a fixed order, and let Ωi be the probability space
corresponding to the independent random choice of the edges going forward
from vi, i.e. {vi, vi+1}, {vi, vi+2}, . . . , {vi, vn}. Then G(n, p) is the product
of these Ωi, i = 1, 2, . . . , n − 1. Since changing the edges incident to a single
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vertex changes the chromatic number of a graph by at most 1, the effect of each
coordinate on χ is at most 1. Theorem 8.1.1 now gives:

8.1.2 Theorem (Shamir–Spencer). Let n ≥ 2 and p ∈ (0, 1) be arbitrary,
and let c = c(n, p) = E [χ(G(n, p))]. Then

P[|χ(G(n, p)) − c| ≥ t] ≤ 2e−t2/2(n−1).

So the chromatic number is almost always concentrated on about
√

n values.
By an ingenious argument (due to Bollobás), it can even be shown that for
sparse random graphs, one of at most 4 values is attained most of the time:

8.1.3 Theorem (Four-value concentration). Let α > 5
6 be fixed, and let

p = n−α. Then for any n, there is an integer u = uα(n) such that χ(G(n, p)) ∈
{u, u+1, u+2, u+3} almost surely; i.e.

lim
n→∞

P[u(n) ≤ χ(G(n, p)) ≤ u(n)+3] = 1.

The key additional idea is that, typically, each subgraph of G(n, p) on about√
n vertices can be 3-colored, and so deviations with about

√
n harmful vertices

can be fixed using 3 extra colors.

8.1.4 Lemma. Let α > 5
6 be fixed, and let p = n−α. Then, almost surely,

G(n, p) has no subgraph H on at most
√

8n ln n vertices with χ(H) > 3.

Proof. What we really calculate is: almost surely, there is no subgraph on
t ≤

√
8n ln n vertices with average degree at least 3. This suffices: We consider

an inclusion-minimal subset of vertices such that the subgraph induced by it
has chromatic number 4; as is easy to check, this subgraph must have all degrees
at least 3.

First, let t ≥ 4 be even. The probability that at least 32t edges live on some
fixed set T of t vertices of G(n, p) is at most (using

(n
k

) ≤ (en/k)k)

(

(t
2

)

3t/2

)

p3t/2 ≤
(

et2/2

3t/2

)3t/2

p3t/2 =

(

te

3

)3t/2

n−3αt/2.

There are
(n

t

) ≤ (ne/t)t choices of T , and so the probability of existence of at
least one T with at least 32t edges is at most

[

ne

t
· t3/2e3/2

33/2
n−3α/2

]t

.

The expression in brackets is at most

O(t1/2n1−3α/2) = O(n5/4−3α/2(ln n)1/4),

which goes to 0 as n → ∞ since α > 5
6 . For t odd, the calculation is technically

a little more complicated since we need to deal with the integer part, as we have
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⌈32 t⌉ edges, but the resulting probability is also bounded by o(1)t. The proof is

finished by summing over all t ∈ [4,
√

8n ln n ]. 2

Proof of Theorem 8.1.3. Let u be the smallest integer such that

P[χ(G(n, p)) ≤ u] >
1

n
.

Let X be the minimum number of vertices whose deletion makes G(n, p) u-
colorable. When X is viewed as a function on the product space

∏n−1
i=1 Ωi as

in the proof of the Shamir–Spencer theorem 8.1.2, each of the n coordinates
has effect at most 1 on it (right?). We thus have the tail estimates from Theo-
rem 8.1.1:

P[X ≥ E [X] + t] ≤ e−t2/2(n−1), P[X ≤ E [X] − t] ≤ e−t2/2(n−1).

Let us set t =
√

2(n − 1) ln n, so that the right-hand sides become 1
n . By the

definition of u, G(n, p) is u-colorable with probability greater than 1n , and so 1n <
P[X = 0] = P[X ≤ E [X] −E [X]]. Combined with the second tail estimate,
this shows that E [X] < t, and the first tail estimate then gives P[X ≥ 2t] ≤
P[X ≥ E [X] + t] ≤ 1

n . So with probability at least 1 − 1
n , G(n, p) with some

2t vertices removed can be u-colored. By Lemma 8.1.4, the subgraph on the
removed 2t vertices is 3-colorable almost surely, and so all of G(n, p) can be
colored with at most u+3 colors almost surely. On the other hand, by the
definition of u, χ(G(n, p)) ≥ u almost surely as well. 2

8.2 Concentration of Lipschitz Functions, With a Proof

There are several ways of proving Theorem 8.1.1 (concentration in product
spaces). Here we present one of the conceptually simplest proofs. A natural
formulation needs a somewhat more general setting, with Lipschitz functions.

Let M1 be a metric space with a metric ρ1, M2 a metric space with a
metric ρ2, and K > 0 a real number. We recall that a mapping ϕ: M1 → M2 is
called K-Lipschitz if it expands no distance in ratio larger than K; that is, if
ρ2(ϕ(x), ϕ(y)) ≤ Kρ1(x, y) for all x, y ∈ M1.

We consider spaces equipped with both a probability measure and a met-
ric. A metric probability space is a four-tuple (Ω, Σ, P, ρ), where (Ω, Σ, P) is a
probability space and ρ is a metric on Ω.

Let us consider the situation as in Theorem 8.1.1 with c1 = c2 = · · · = cn = 1
(each coordinate has effect at most 1). Let us view each factor (Ωi, Σi, Pi) as a
metric probability space with the “discrete” metric ρi given by ρi(ωi, ω

′
i) = 1

for every two distinct elements ωi, ω
′
i ∈ Ωi. A metric ρ on the product space

(Ω, Σ, P) is defined by ρ(ω, ω′) =
∑n

i=1 ρi(ωi, ω
′
i), where ω = (ω1, . . . , ωn), ω′ =

(ω′
1, . . . , ω

′
n) ∈ Ω. For our specific choice of the metrics ρi, the resulting ρ

is the Hamming metric; the distance of two vectors ω, ω′ is the number of
coordinates where they differ. If f : Ω → R is a function, then, as is easy to
check, each coordinate has effect at most 1 if and only if f is 1-Lipschitz, where
Ω is considered with the just introduced metric ρ, and R with the usual metric.
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The definition of ρ on the product space makes sense for arbitrary metrics
ρi on the factors. We write ρ = ρ1 + ρ2 + · · · + ρn and we call ρ the ℓ1-sum of
the ρi. We prove the following generalization of Theorem 8.1.1:

8.2.1 Theorem. For i = 1, 2, . . . , n, let (Ωi, Σi, Pi, ρi) be a metric probability
space, and suppose that the diameter (maximum distance) of (Ωi, ρi) is at most
ci. Let M = (Ω, Σ, P, ρ) be the product space with ρ = ρ1+ ρ2+ · · ·+ ρn. Then
for any 1-Lipschitz (and measurable) function f : Ω → R and for all t ≥ 0, we
have

P[f ≥ E [f ] + t] ≤ e−t2/2σ2 and P[f ≤ E [f ] − t] ≤ e−t2/2σ2 ,

where σ2 =
∑n

i=1 c2i .

The proof resembles the proof of the basic Chernoff inequality (Theo-
rem 7.1.1) in many features. In that proof, we estimated the expectation

E
[

euX
]

, where X was the considered random variable. Here we define a si-

milar quantity for a general metric probability space M = (Ω, Σ, P, ρ): the
Laplace functional of M is a function EM : (0,∞) → R given by

EM (u) = sup
{

E
[

euf
]

: f : Ω → R is 1-Lipschitz and E [f ] = 0
}

.

First we show that a bound on EM implies concentration of Lipschitz
functions; this is exactly as in the proof of Chernoff’s inequality. Assume that
EM (u) ≤ eau2/2 for some a > 0 and all u > 0, and let f : Ω → R be 1-Lipschitz.
We may suppose that E [f ] = 0. Using Markov’s inequality for the random
variable Y = euf , we have P[f ≥ t] = P

[

Y ≥ etu
] ≤ E [Y ] /etu ≤ EM (u)/etu ≤

eau2/2−ut, and setting u = t
a yields P[f ≥ t] ≤ e−t2/2a. So it suffices to show

that under the assumptions of Theorem 8.2.1, EM (u) ≤ eσ2u2/2.

Next, crucially, we prove that the Laplace functional is submultiplicative.

8.2.2 Lemma. Let M1 = (Ω1, Σ1, P1, ρ1) and M2 = (Ω2, Σ2, P2, ρ2) be metric
probability spaces, and let M = (Ω, Σ, P, ρ) be their product with ρ = ρ1 + ρ2.
Then EM (u) ≤ EM1(u) · EM2(u) for all u > 0.

Proof. Let f : Ω → R be 1-Lipschitz with E [f ] = 0. We set g(y) =
Ex [f(x, y)] =

∫

Ω1
f(x, y) dP1(x) (the expectation of f(x, y) with y fixed and

x random). We rewrite

E
[

euf
]

=

∫

Ω2

∫

Ω1
euf(x,y) dP1(x) dP2(y)

=

∫

Ω2
eug(y)

(∫

Ω1
eu(f(x,y)−g(y)) dP1(x)

)

dP2(y).

For every y, the function x 7→ f(x, y) − g(y) has zero expectation and it is
clearly 1-Lipschitz, and so the inner integral is at most EM1(u). Next, we have
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E [g] = 0 and we claim that g is also 1-Lipschitz. Indeed,

|g(y) − g(y′)| =

∣

∣

∣

∣

∫

Ω1
f(x, y) − f(x, y′) dP1(x)

∣

∣

∣

∣

≤
∫

Ω1
|f(x, y) − f(x, y′)|dP1(x)

≤
∫

Ω1
ρ2(y, y′) dP1(x) = ρ2(y, y′).

So
∫

Ω2
eug(y) dP2(y) ≤ EM2(u) and we are done. 2

Finally, to prove Theorem 8.2.1, it remains to bound the Laplace functional
of the factors.

8.2.3 Lemma. Let M = (Ω, Σ, P, ρ) be a metric probability space of diameter
at most c. Then EM (u) ≤ ec2u2/2 for all u > 0.

Proof. For simplicity, we give the proof with c = 1. If f : Ω → R is 1-Lipschitz
with E [f ] = 0, then its range is contained in [−1, 1]. Let h be the linear function
given by h(x) = x sinh u + cosh u, where cosh u = 1

2 (e
u + e−u) and sinh u =

1
2(e

u−e−u). Elementary calculus shows that h(x) ≥ eux holds for all x ∈ [−1, 1]
(use Taylor series). So

E
[

euf
]

≤ E [h ◦ f ] = E [f ] sinh u + cosh u = cosh u ≤ eu2/2.

This proves the lemma, and Theorem 8.2.1 follows. 2

Variations. If we can prove better bounds for the Laplace functionals of
the factors than the general Lemma 8.2.3, the above proof method yields an
improvement over Theorem 8.2.1. One such possible improvement is similar to
the passage from the basic Chernoff inequality for sums of independent uniform
±1 random variables to the more general form, Theorem 7.2.1, dealing with
sums of arbitrary independent bounded random variables. Here, for simplicity,
we consider only an illustrative special case.

We suppose that each factor Mi = (Ωi, Σi, Pi, ρi) consists of two points,
say Ωi = {0, 1}, with probabilities 1−p and p, and with ρi(0, 1) = 1 (so
that the product space models n tosses of a biased coin). Let f : Ωi → R
be a 1-Lipschitz function on Mi with E [f ] = 0. That is, |f(0) − f(1)| ≤ 1

and (1−p)f(0) + pf(1) = 0. Then E
[

euf
]

= (1−p)euf(0) + peuf(1), and ele-

mentary calculus shows that this expression is maximized, under the above
two conditions on f(0) and f(1), for f(0) = −p and f(1) = 1−p. Therefore,
EMi(u) ≤ pe(1−p)u + (1−p)e−pu = e−pu(1 − p + peu), and for the product space
M , we have EM (u) ≤ e−npu(1 − p + peu)n. Using Markov’s inequality as usual
and performing some heroic calculations (for which we refer to the book of
Janson,  Luczak, and Ruciński, Theorem 2.1), one can arrive at the following
counterpart of Theorem 7.2.1:
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8.2.4 Proposition. Let Mi be the two-point probability spaces as above, let
M = (Ω, Σ, P, ρ) be their product, and let f : Ω → R be a 1-Lipschitz function.
Then, for all t > 0,

P[f ≥ E [f ] + t] < e−t2/2(σ2+t/3) and P[f ≤ E [f ] − t] < e−t2/2(σ2+t/3),

where σ2 = np.

More results of this type can be found in

D. A. Grable: A large deviation inequality for functions of indepen-
dent, multi-way choices, Combinatorics, Probability and Computing
7,1(1998) 57–63.

The proofs in that paper use martingales; this notion will be briefly discussed
later.

Another strengthening of Theorem 8.1.1 is based on the observation that
the Lipschitz condition for f need not be used in full in the proof. The idea,
introduced by Alon, Kim, and Spencer, is to imagine that we are trying to find
the value of f by making queries about the values of the ωi to a truthful oracle
(such as “what is the value of ω7?”). Sometimes we can perhaps infer the value
of f by querying the values of only some of the variables. Or sometimes, having
learned the values of some of the variables, we know that some other variable
cannot influence the value of f by much (although that variable may have much
greater influence in other situations). By devising a clever querying strategy,
the bound for σ2 can again be reduced in some applications; see Grable’s paper
cited above.

8.3 Martingales, Azuma’s Inequality, and Concentration

on Permutations

Theorem 8.2.1 has been generalized in many ways; we will indicate some of
them. One direction of generalizations replaces the assumption that we deal
with a product space with many factors by weaker assumptions. The essential
fact about the considered metric probability space is not the product structure,
but some kind of “high dimensionality”.

In this section, we consider the (rather sophisticated) probabilistic notion
of a martingale, which leads to quite general concentration results. Currently it
seems that in practically all applications of this kind, martingales can be repla-
ced by other, even more powerful, tools. But martingales are often encountered
in proofs in the literature, and so we introduce them at least briefly.

Let (Ω, Σ, P ) be a probability space, and let Ξ0 = {∅, Ω} ⊂ Ξ1 ⊂ Ξ2 ⊂
· · · ⊆ Σ be a sequence of σ-algebras1 on Ω. In the case of a finite Ω, one can
think of the Ξi as successively finer and finer partitions of Ω. (Formally, in
this case, Ξi is the σ-algebra generated by some partition Πi of Ω; i.e. Ξi =
{C1 ∪ C2 ∪ · · · ∪ Ck: k = 0, 1, . . . , |Πi|, C1, . . . , Ck ∈ Πi}.)

1We recall that a σ-algebra is a set system closed under complements, countable unions,
and countable intersections. Every measure is defined on some σ-algebra.
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For example, if Ω = {0, 1}n, we can let Ξi be the σ-algebra generated by
the partition Πi of Ω induced by the first i coordinates. Each class of Πi has
the form {ω ∈ Ω: ωj = xj for j = 1, 2, . . . , i} for some x1, x2, . . . , xi ∈ {0, 1}.

Next, we need the notion of conditional expectation. In the discrete case, if
Ξ is a σ-algebra generated by a partition Π, the conditional expectation of a
random variable X with respect to Ξ is a random variable that is constant on
each class C of Π, and whose value on C equals the average of X over C. For
a general, possibly infinite, Ξ, the definition is more complicated.

8.3.1 Definition. Let (Ω, Σ, P ) be a probability space, Ξ ⊂ Σ a σ-algebra and
X a random variable on Ω. The conditional expectation of X with respect to
Ξ is a random variable Y (usually denoted by E [X |Ξ]) that satisfies

1. Y is Ξ-measurable.

2. For every B ∈ Ξ with P[B] 6= 0, we have E [Y |B] = E [X |B]. Here, for
any random variable Z and any event B with P[B] > 0, we write E [Z |B]
for 1

P[B]

∫

B Z(ω) dP(ω).

In general it is not obvious that Y exists and that it is unique. In our discrete
case, though, it is exactly the random variable obtained by averaging over the
classes as described above.

Finally, we define a martingale. Let Z0, Z1, . . . be a sequence of random
variables on Ω, where Zi is Ξi-measurable. In our example with {0, 1}n, this
means that Zi does not depend on the coordinates i+1 through n. The (finite
or infinite) sequence Z0, Z1, Z2, . . . is called a martingale if we have

E [Zi |Ξi−1] = Zi−1, i = 1, 2, 3, . . . . (8.1)

If Ξi−1 and Ξi are given by partitions Πi−1 and Πi, respectively, where Πi

refines Πi−1, then Zi is constant on each class of Πi and Zi−1 is constant on
each class of Πi−1. The martingale condition (8.1) means that on each class C
of the coarser partition Πi−1, Zi−1 is the average of Zi over all the classes of Πi

that are contained in C. The martingale condition is schematically illustrated
below:

Π0

Z0

Π1

Z1

Π2

Z2

The space Ω is indicated as an interval, and the partitions Π0, Π1, . . . are drawn
as partitions into subintervals. The values of Zi are indicated by the thick lines,
and the martingale condition means that the area of each dashed rectangle
should equal the total area of the corresponding gray rectangles.

Here is the basic result about concentration of martingales:
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8.3.2 Theorem (Azuma’s inequality). Let Z0, Z1, . . . , Zn = f be a mar-
tingale on some probability space, and suppose that |Zi − Zi−1| ≤ ci for
i = 1, 2, . . . , n. Then

P[f ≥ E [f ] + t] ≤ e−t2/2σ2 and P[f ≤ E [f ] − t] ≤ e−t2/2σ2 ,

where σ2 =
∑n

i=1 c2i .

That is, if one can “interpolate” between f and the constant function E [f ]
by a martingale with bounded differences, then f is strongly concentrated.

The proof of Azuma’s inequality is conceptually similar to that of Theo-
rem 8.2.1, and we omit it (it can be found in the book of Alon and Spencer, for
example).

Random variables on product spaces give rise to examples (somewhat tri-
vial) of martingales, as follows. Let (Ωi, Σi, Pi) be probability spaces, i =
1, 2, . . . , n, let (Ω, Σ, P) be their product, and let f : Ω → R be a random vari-
able on the product. Let us define a random variable Zi on Ω: it depends only
on the first i coordinates, and for every choice of x1 ∈ Ω1, . . . , xi ∈ Ωi, we have
Zi(x1, . . . , xi) = Eωi+1,...,ωn [f(x1, . . . , xi, ωi+1, . . . , ωn)]. In words, Zi(x1, . . . , xi)
is the expectation of f(ω) when the first i coordinates are fixed to x1, . . . , xi

and the others are chosen at random. So Z0 is simply the number E [f ], while
Zn = f .

Since Zi depends only on the first i variables, the appropriate σ-algebra Ξi

is the one generated by the product of Σ1 through Σi. In order to get used to the
notion of a martingale, the reader may want to verify that the Zi thus defined
satisfy the martingale condition E [Zi |Ξi−1] = Zi−1 and that, moreover, if the
effect of the ith variable on f is at most ci, then |Zi − Zi−1| ≤ ci. Once this is
checked, it becomes clear that Azuma’s inequality generalizes Theorem 8.1.1.

A more general example of a martingale, and practically the only type of
martingales encountered in combinatorial applications, is obtained as follows.
We have some probability space (Ω, Σ, P) (not necessarily a product space), a
random variable f : Ω → R, and a sequence Ξ0 = {∅, Ω} ⊂ Ξ1 ⊂ Ξ2 · · · ⊆ Σ
of σ-algebras, and we set Zi = E [f |Ξi]. Such a martingale is used in the next
example.

Concentration of Lipschitz functions of a random permutation. Here
we illustrate on an important and concrete example how Azuma’s inequality
allows us to deal with Lipschitz functions on a metric probability space that
does not “quite” have a product structure but it is “high-dimensional” in a sui-
table sense. In other words, we consider Lipschitz functions of many moderately
dependent random variables.

Let Sn denote the set of all permutations of [n] (i.e. bijections [n] → [n]).
We consider the uniform probability measure on Sn, and we define the distance
of two permutations π1, π2 ∈ Sn as ρ(π1, π2) = |{i ∈ [n]: π1(i) 6= π2(i)}|.

8.3.3 Theorem. Let f : Sn → R be a 1-Lipschitz function. For π ∈ Sn chosen
at random and for all t ≥ 0, we have

P[f(π) ≥ E [f ] + t] ≤ e−t2/8n and P[f(π) ≤ E [f ] − t] ≤ e−t2/8n.
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Example. Let I(π) be the number of inversions of a permutation π ∈ Sn; i.e.
I(π) = |{(i, j) ∈ [n]2: i < j, π(i) > π(j)}|. The number of inversions determines
the complexity of some sorting algorithms (such as insert-sort), for example. It
is easy to check that I is n-Lipschitz. By applying Theorem 8.3.3 on f(π) =
1
n I(π), we get that I(π) is concentrated in an interval of length O(n3/2) around

E [I] = 1
2

(n
2

) ≈ n2

4 .

Proof of Theorem 8.3.3. We define a sequence Π0, Π1, . . . , Πn−1 of partitions
of Sn, where Πi is the partition according to the values at 1, 2, . . . , i. That
is, each class C of Πi has the form C = C(a1, . . . , ai) = {π ∈ Sn: π(1) =
a1, . . . , π(i) = ai} for some (distinct) a1, . . . , ai ∈ [n]. In particular, Π0 has the
single class Sn, and Πn−1 is the partition into singletons.

Let Ξi be the σ-algebra generated by Πi, and let Zi be the random variable
given by

Zi = E [f(π) |Ξi] .

More explicitly, if π lies in a class C of Πi, then

Zi(π) = aveσ∈C f(σ) :=
1

|C|
∑

σ∈C

f(σ).

The sequence Z0, Z1, . . . , Zn satisfies the martingale condition (8.1). We want
to apply Azuma’s inequality 8.3.2, and so we need to bound the differences: we
will prove that

|Zi − Zi−1| ≤ 2. (8.2)

We consider a permutation π in some class C = C(a1, . . . , ai−1) of Πi−1. The
value Zi−1(π) is the average of f over C. In the partition Πi, the class C is
further partitioned into several classes C1, . . . , Ck (in fact, we have k = n−i+1),
π lies in one of them, say in C1, and Zi(π) is the average of f over C1. We thus
ask, by how much the average over C1 can differ from the average over C.

The average over C is the average of the averages over the Cj, j = 1, 2, . . . , k.
Thus, it suffices to show that the average over Cj1 and the average over Cj2

cannot differ by more than 2 (for all j1, j2). The reason is that there is a bijection
ϕ: Cj1 → Cj2 such that ρ(π, ϕ(π)) ≤ 2 for all π ∈ Cj1. Indeed, let Cj1 =
C(a1, . . . , ai−1, b1) and Cj2 = C(a1, . . . , ai−1, b2), where b1 and b2 are distinct
and also different from all of a1, . . . , ai−1. The bijection ϕ is defined by the
transposition of the values b1 and b2: For π ∈ Cj1, we set ϕ(π) = π′, where
π′(i) = b2, π′(π−1(b2)) = b1, and π′(j) = π(j) for π(j) 6∈ {b1, b2}. We have

| aveCj1
f − aveCj2

f | =
∣

∣

∣aveπ∈Cj1
[f(π) − f(ϕ(π))]

∣

∣

∣

≤ aveπ∈Cj1
|f(π) − f(ϕ(π))|

≤ 2,

because ρ(π, ϕ(π)) ≤ 2 and f is 1-Lipschitz.
We have established the bound (8.2) for the martingale differences, and

Azuma’s inequality 8.3.2 yields Theorem 8.3.3. 2

The proof of Theorem 8.3.3 can be generalized to yield concentration results
for more general discrete metric probability spaces. The key condition is that
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such spaces have a suitable sequence of partitions. Some such results can be
found, for instance, in

B. Bollobás: Martingales, isoperimetric inequalities and random gra-
phs, in: 52. Combinatorics, Eger (Hungary), Colloq. Math. Soc. J.
Bolyai, 1987, pages 113–139.

8.4 Isoperimetric Inequalities and Concentration on the

Sphere

The method of proof of Theorem 8.2.1 (concentration of Lipschitz functions
on product spaces) is suitable for dealing with Hamming-type metrics (or ℓ1-
sums of metrics). To some extent, this is also true for Azuma’s inequality and
other martingale-based results. Sometimes we need to deal with other “high-
dimensional” metric spaces, where the metric is not of a Hamming type; a
notable example is various subspaces of Rn with the Euclidean metric. Here
concentration of measure can sometimes be proved by geometric methods. We
will consider just one example: measure concentration on the Euclidean sphere.

The Euclidean sphere. Let Sn−1 = {x ∈ Rn: ‖x‖ = 1} denote the unit
sphere in Rn. We consider it with the Euclidean metric inherited from Rn,
and the probability measure P on Sn−1 is the usual surface measure scaled so
that the whole Sn−1 has measure 1. More formally, for a set A ⊆ Sn−1, we let
Ã = {αx: x ∈ A,α ∈ [0, 1]} be the union of all segments connecting points of
A to the center of Sn−1, and we set P[A] = λn(Ã)/λn(Bn), where λn is the
Lebesgue measure in Rn and Bn denotes the unit ball.

A result about concentration of Lipschitz functions on Sn−1, called Lévy’s
lemma, is usually proved via a geometric result, an isoperimetric inequality.

Isoperimetric inequalities. The mother of all isoperimetric inequalities sta-
tes that among all planar geometric figures with a given perimeter, the circular
disc has the largest possible area. (This is well-known but not easy to prove
rigorously.) In the sense considered here, isoperimetric inequalities claim that
among all sets of a given volume in some metric space under consideration, a
ball of that volume has the smallest volume of the t-neighborhood (where the
t-neighborhood of a set A is the set of all points whose distance from A is at
most t) :

(In the picture, assuming that the dark areas are the same, then the light gray
area is the smallest for the disc.) Letting t → 0, one can get a statement invol-
ving the perimeter or surface area. But the formulation with t-neighborhood
makes sense even in spaces where “surface area” is not defined.

We note that a ball in the Euclidean metric on Sn−1 is a spherical cap, that
is, an intersection of Sn−1 with a halfspace. The isoperimetric inequality for
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the sphere states that for all measurable sets A ⊆ Sn−1 and all t ≥ 0, we have
P[At] ≥ P[Ct], where At denotes the set of all points of Sn−1 of distance at
most t from A, and where C is a spherical cap with P[C] = P[A]. This is a
rather difficult geometric result; a proof can be found, for example, in

T. Figiel, J. Lindenstrauss, and V. D. Milman: The dimension of
almost spherical sections of convex bodies, Acta Math., 139:53–94,
1977.

Let C be a cap of measure 12 , that is, a hemisphere. Then Ct is the complement
of a cap of height 1−t, and some calculation (which we omit here) shows that
1 − P[Ct] ≤ 2e−t2n/2. Consequently, by the isoperimetric inequality, we obtain:

8.4.1 Theorem (Measure concentration for the sphere). Let A ⊆ Sn−1

be a measurable set with P[A] ≥ 1
2 , and let At denote the t-neighborhood of A

(in the Euclidean metric). Then

1 − P[At] ≤ 2e−t2n/2.

Thus, if A occupies half of the sphere, almost all points of the sphere lie at
distance at most O(n−1/2) from A.

We should stress that measure concentration is an exclusively high-
dimensional phenomenon; the inequality is practically meaningless for S2 or
S3, and it becomes interesting only when the dimension is large.

Theorem 8.4.1 speaks about the neighborhoods of sets, while in probabilistic
applications, one often needs concentration of Lipschitz functions. The passage
to Lipschitz functions is not too difficult. First we need to introduce the median
of a function.

Let f be a real random variable (on any probability space; in the discussion
below, f is a 1-Lipschitz function Sn−1 → R). We define the number med(f),
called the median of f , by

med(f) = sup{t ∈ R: P[f ≤ t] ≤ 1
2}

We have P[f < med(f)] ≤ 1
2 and P[f > med(f)] ≤ 1

2 . This is perhaps less
obvious than it might seem at first sight. The first inequality can be derived
from the σ-additivity of the measure P:

P[f < med(f)] =
∞
∑

k=1

P
[

med(f) − 1
k−1 < f ≤ med(f) − 1

k

]

= sup
k≥1

P
[

f ≤ med(f) − 1
k

]

≤ 1
2 .

The second inequality follows similarly.
Here is the promised result about concentration of Lipschitz functions on

the sphere:

8.4.2 Theorem (Lévy’s Lemma). Let f : Sn−1 → R be 1-Lipschitz. Then
for all t ≥ 0,

P[f ≥ med(f) + t] ≤ 2e−t2n/2 and P[f ≤ med(f) − t] ≤ 2e−t2n/2.
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Proof. We prove only the first inequality. Let A = {x ∈ Sn−1: f(x) ≤ med(f)}.
By the properties of the median, P[A] ≥ 1

2 . Since f is 1-Lipschitz, we have
f(x) ≤ med(f) + t for all x ∈ At. Therefore, by Theorem 8.4.1, we get
P[f(x) ≥ med(f) + t] ≤ P

[

Sn−1 \ At

] ≤ 2e−t2n/2. 2

The median is generally difficult to compute. But for a 1-Lipschitz function,
it cannot be too far from the expectation:

8.4.3 Proposition. Let f : Sn−1 → R be 1-Lipschitz. Then

|med(f) −E [f ] | ≤ 12n−1/2.

Proof.

|med(f) −E [f ] | ≤ E [|f − med(f)|]

≤
∞
∑

k=0

k+1√
n

P
[

|f − med(f)| ≥ k√
n

]

≤ n−1/2
∞
∑

k=0

(k + 1) · 4e−k2/2

≤ 12n−1/2.

2

Other important spaces with concentration similar to Theorem 8.4.2 include
the n-dimensional torus (the n-fold Cartesian product S1×· · ·×S1 ⊂ R2n) and
the group SO(n) of all rotations around the origin in Rn. Let us remark that
results similar to Theorem 8.1.1 (concentration on product spaces) can also be
derived from suitable isoperimetric inequalities. For example, if our space is
the product {0, 1}n with the uniform probability measure, the Hamming cube,
then an isoperimetric inequality holds (Harper’s inequality, again stating that
the ball has the smallest t-neighborhood among all sets of a given measure),
and the special case of Theorem 8.1.1 can be derived from it, with a little worse
estimate.

Much information about these results and their applications can be found
in

J. Lindenstrauss and V. D. Milman: The local theory of normed
spaces and its applications to convexity, in Handbook of Convex
Geometry (P.M. Gruber and J. M. Wills eds), North-Holland, Am-
sterdam, 1993, pages 1149–1220.

Let us remark that “functional-theoretic” methods, as opposed to geometric
ones, have recently been prominent in new developments in this direction. A
thorough treatment of concentration phenomena is the recent book

M. Ledoux: The Concentration of Measure Phenomenon, volume 89
of Mathematical Surveys and Monographs, Amer. Math. Soc., Pro-
vidence, RI, 2001.
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Concentration: Beyond the Lipschitz
Condition

9.1 Talagrand’s Inequality

Here we enrich our collection of results about concentration by a remarkable
result of Talagrand. We begin with a special case, which is easier to state. The
setting is similar to that in Theorem 8.1.1: f is a function on a product space
(Ω, Σ, P) such that the ith coordinate has effect at most 1.

We say that f has certificates of size s for exceeding value r if the following
holds. For any ω = (ω1, . . . , ωn) ∈ Ω with f(ω) ≥ r, there is a subset I ⊆ [n] of
at most s indices such that these coordinates alone force the value of f to be
at least r: whenever ω′ ∈ Ω satisfies ω′

i = ωi for all i ∈ I, we have f(ω′) ≥ r as
well.

Example: nondecreasing subsequences. Let (Ω, Σ, P) be the product of n
intervals [0, 1] with the uniform probability measure. For ω ∈ Ω, let f(ω) be the
length of a longest nondecreasing subsequence of the sequence (ω1, ω2, . . . , ωn),
i.e. the maximum k such that there are indices i1 < i2 < · · · < ik with ωi1 ≤
ωi2 ≤ · · · ≤ ωik . Clearly, each coordinate has effect at most 1. Moreover, for
each r ≥ 0, f has certificates of size at most r for exceeding the value r (just
fix the nondecreasing subsequence).

The following theorem asserts that if f possesses small certificates for ex-
ceeding certain values, then it is even more concentrated than an arbitrary
1-Lipschitz function.

9.1.1 Theorem (Talagrand’s inequality, special case). Let (Ωi, Σi, Pi) be
probability spaces, i = 1, 2, . . . , n, let (Ω, Σ, P) be their product, and let f : Ω →
R be a (measurable) function such that each coordinate has effect at most 1.
Let m = med(f) and let t ≥ 0. Supposing that f has certificates of size at most
s1 for exceeding the value m, we have

P[f ≤ m − t] ≤ 2e−t2/4s1 .

If f has certificates of size at most s2 for exceeding the value m + t, we have

P[f ≥ m + t] ≤ 2e−t2/4s2
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(note the asymmetry in the lower and upper tail estimates!).

The theorem speaks about deviations from the median, rather than from
the expectation. But under suitable conditions, one can show that the median
is close to the expectation, by a calculation similar to the proof of Proposi-
tion 8.4.3. For example, if m ≥ 1 and f has certificates of size O(r) for exceeding
the value r, for all r ≥ 1, we get |med(f) −E [f ] | = O(

√

E [f ] ).

Nondecreasing subsequences continued. The length of a longest non-
decreasing subsequence satisfies the assumption of Theorem 9.1.1, and we get
that it is concentrated around the median m in an interval of length about√

m. As we will show next, m is about
√

n, and so f is typically concentrated
on about n1/4 values. Note the power of Talagrand’s inequality: for example,
Theorem 8.1.1 would give only about

√
n !

For a k-tuple of indices i1 < · · · < ik, we have P[ωi1 ≤ · · · ≤ ωik ] = 1
k!

(by symmetry, all the k! permutations are equally probable). Thus, P[f ≥ k] ≤
(n
k

)

1
k! ≤

(

en
k

)k ( e
k

)k
=
(

e
√

n
k

)2k
. So m ≤ 3

√
n, say.

To derive a lower bound for m, let g(ω) be the length of a longest nonincreas-
ing subsequence in ω. By symmetry, med(g) = med(f). By the Erdős–Szekeres
lemma, we always have f(ω)g(ω) ≥ n. Since we know that P[f ≤ 3

√
n] ≥ 1

2 , we

get P
[

g ≥ 1
3

√
n
]

≥ 1
2 , and so m ≥ 1

3

√
n.

A more general form of Talagrand’s inequality. Let (Ω, Σ, P) be a pro-
duct probability space as in Theorem 9.1.1 above. The form of Talagrand’s
inequality we are going to state next looks like a kind of isoperimetric inequa-
lity for this space, but with a little unusual notion of distance d(ω,A) of a point
ω ∈ Ω from a set A ⊆ Ω. We say that a unit vector α = (α1, . . . , αn) ∈ Rn,
‖α‖ = 1, with αi ≥ 0 for all i, is a witness for d(ω,A) ≥ τ if we have
∑

i:ωi 6=ω′
i
αi ≥ τ for all ω′ ∈ A. We define d(ω,A) as the supremum of τ ≥ 0

possessing a witness for d(ω,A) ≥ τ .
This definition apparently needs some time to be digested. A helpful example

is with Ω = {0, 1}n, the cube: here d(ω,A) turns out to be the distance of ω to
the convex hull of A ({0, 1}n is interpreted as a subset of Rn).

9.1.2 Theorem (Talagrand’s inequality). Let A,B ⊆ Ω be two (measura-
ble) sets such that d(ω,A) ≥ τ for all ω ∈ B. Then

P[A] P[B] ≤ e−τ2/4.

The proof is (clever but) not impossibly complicated, but we choose to omit
it. It can be found, e.g., in the second edition of the book of Alon and Spencer.

In order to get used to this result, let us derive Theorem 9.1.1 from it.

Proof of Theorem 9.1.1. Let f be as in Theorem 9.1.1, and let r ≥ 0 be
such that f has certificates of size at most s for exceeding the value r. For all
t ≥ 0, we prove

P[f ≤ r − t] P[f ≥ r] ≤ e−t2/4s; (9.1)

this will give both the inequalities in Theorem 9.1.1. Indeed, using it with
r = m, we obtain P[f ≤ m − t] P[f ≥ m] ≤ e−t2/4s1 , and the first inequality
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in the theorem follows using P[f ≥ m] ≥ 1
2 . Similarly, the second inequality

follows by substituting r = m + t.
In order to prove (9.1), we set, not surprisingly, A = {ω ∈ Ω: f(ω) ≤ r − t}

and B = {ω ∈ Ω: f(ω) ≥ r}, and we want to show that for all ω ∈ B, d(ω,A) ≥
τ = t√

s
. Once we succeed in this, we are done.

Fix ω ∈ B, and let I ⊆ [n], |I| ≤ s, be the set of indices of a certificate for
f(ω) ≥ r: any ω′ sharing with ω the coordinates indexed by I satisfies f(ω′) ≥ r.
We may assume I 6= ∅, for otherwise, f ≥ r always and P[f ≤ r − t] = 0. Let
α ∈ Rn be the unit vector with αi = |I|−1/2 for i ∈ I and αi = 0 for i 6∈ I. For
ω′ ∈ A, define ω′′ ∈ Ω by

ω′′
i =

{

ωi for i ∈ I
ω′

i for i 6∈ I.

Then f(ω′′) ≥ r, while f(ω′) ≤ r − t since ω′ ∈ A, and so |f(ω′′) − f(ω′)| ≥ t.
Since the effect of each coordinate is at most 1, ω′′ and ω′ differ in at least t
positions (all of which are indexed by I), and ω and ω′ also differ in at least t
positions indexed by I. So

∑

i:ωi 6=ω′
i
αi ≥ t|I|−1/2 ≥ t/

√
s. Therefore α witnesses

that d(A,ω) ≥ t√
s
, and (9.1) follows from Theorem 9.1.2. 2

Concentration of the largest eigenvalue. This is a neat application of the
more general version of Talagrand’s inequality (Theorem 9.1.2). Let M denote
the probability space of all symmetric matrices M = (mij)

n
i,j=1, where mii = 0

for all i, the entries mij for 1 ≤ i < j ≤ n are chosen independently and
uniformly at random in the interval [0, 1], and those with i > j are defined by
symmetry. Formally, M can be identified with the product space [0, 1]m, where
m =

(n
2

)

is the number of entries of M above the diagonal. (The argument below
works, with small changes, for many other distributions of the mij; the selected
example gives particularly simple calculations.) As linear algebra teaches us,
each M ∈ M has n real eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn. We derive a very
strong concentration result for λn. (Eigenvalues of random matrices, significant
in many applications, are usually quite difficult to handle.)

We use the following well-known characterization of λn:

λn = max{xT Mx: x ∈ Rn, ‖x‖ = 1}.

First we determine the order of magnitude of E [λn]. On the one hand, setting
u = ( 1√

n
, 1√

n
, . . . , 1√

n
), we have

E [λn] ≥ E
[

uT Mu
]

= 1
n

n
∑

i,j=1

E [mij] = 1
2n(n2 − n) = 1

2 (n − 1).

On the other hand, for any M and any unit vector x, we have, by the Cauchy–
Schwarz inequality,

xT Mx =
∑

i,j

xixjmij

≤
(

∑

i,j

x2i x
2
j

)1/2(
∑

i,j

m2ij

)1/2
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=

(

∑

i,j

m2ij

)1/2

= ‖M‖2.

We estimate E [‖M‖2]2 ≤ E
[‖M‖22

]

=
∑

ij E
[

m2ij

]

= 1
3(n

2 − n), and so

1
2 (n − 1) ≤ E [λn] ≤ 1√

3
n.

Now we start with the concentration result. For numbers r and t ≥ 0, let
A ⊆ M be the set of all matrices with λn ≤ r, and let B ⊆ M consist of
those matrices with λn ≥ r + t. We want to show that for all M ∈ B, we have
d(M,A) ≥ t

2 , where d(ω,A) is as in Talagrand’s inequality. Since M ∈ B, there
is a unit vector x = x(M) with xT Mx ≥ r + t. On the other hand, for any
N ∈ A, we have xT Nx ≤ r. We calculate

t ≤ xT Mx − xT Nx =
∑

1≤i<j≤n

2xixj(mij − nij) ≤
∑

1≤i<j≤n
mij 6=nij

2|xixj |.

This suggests an appropriate choice for a vector α = (αij)1≤i<j≤n witnessing
d(M,A) ≥ t

2 . Namely, letting βij = 2|xixj|, we find

‖β‖2 = 4
∑

i<j

x2i x
2
j ≤ 2

( n
∑

i=1

x2i

)2

= 2,

and so for α = β
‖β‖ , we have

∑

i<j:mij 6=nij

αij ≥ 1√
2

∑

i<j:mij 6=nij

2|xixj | ≥ t√
2
.

The assumptions of Talagrand’s inequality 9.1.2 are satisfied for A and B with
τ = t√

2
, and we obtain

P[A] P[B] ≤ e−t2/8.

Setting r to the median m = med(λn), we have P[A] = 1
2 , and so

P[λn ≥ m + t] ≤ 2e−t2/8.

Letting r = m − t, we get P[B] = 1
2 and so

P[λn ≤ m − t] ≤ 2e−t2/8.

Thus, λn is concentrated in an interval of length only O(1) around the median!
Further calculation, similar to the proof of Proposition 8.4.3, shows that |m −
E [λn] | = O(1).
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9.2 The Vu–Kim Inequality

Even sophisticated concentration inequalities for Lipschitz functions are useless
if the investigated function is not Lipschitz enough. Of course, often this may
be simply because the function is not concentrated, and this possibility should
not be overlooked. But sometimes there still is a concentration result, and the
rather complicated-looking inequality presented in this section may help.

As a running example, let T be the number of triangles in the random
graph G(v, p). (We use v instead of the usual n, since n will be reserved for
the number of variables in the considered function). We already studied this
random variable in Section 5.3, where we showed that for p >> 1

v (we recall
that this notation means pv → ∞), G(v, p) almost surely contains a triangle.

Here we let p = ϕ(v)
v , where ϕ(v) → ∞ as v → ∞ but not very fast (say,

ϕ(v) = v1/9).
Formally, T is a real function on the space {0, 1}n with n =

(v
2

)

and with the
appropriate product measure. By adding a single edge we can create as many
as v−2 new triangles, and so the effect of each variable on T is at least v−2 (in

fact, it equals v−2). We have E [T ] =
(v
3

)

p3 = Θ(ϕ(v)3), while σ = (
∑n

i=1 c2i )1/2

in Theorem 8.1.1 is Θ(v2). If we want the bound e−t2/2σ2 in that theorem to
be meaningful for deviations t comparable to E [T ] or smaller, we would need
ϕ(v) as large as v2/3! Neither Talagrand’s inequality seems to be helpful in this
situation.

Yet T is much more concentrated than these results indicate. The intuitive
reason is that the situation where one edge is contained in very many triangles
is extremely rare. For instance, the expected number of triangles containing a
given edge is only (v−2)p2 = Θ(ϕ(v)2/v), which is quite small. Formalizing this
intuition is not so easy. The expected effect of each variable being small is ge-
nerally not sufficient for concentration. This is illustrated by the next example,
which also introduces us to the realm of multivariate polynomials, where we
will stay for the rest of this section.

9.2.1 Example. Let n = 4k, and for t = (t1, . . . , tn) ∈ {0, 1}n, let us define

f(t) = (t1t2 + t3t4 + · · · + t2k−1t2k)(t2k+1 + t2k+2 + · · · + t4k).

Suppose that each ti independently attains value 1 with probability p = n−1/2

and value 0 with probability 1−p (in other words, f is considered on {0, 1}n

with a suitable product probability measure). By multiplying the parentheses
as polynomials and using the linearity of expectation, we find E [f ] = 2k2p3 =
n1/2/8. What is the expected effect of ti? If, for example, t2 through tn are
chosen at random, then the expected effect of changing t1 from 0 to 1 or back is
E [t2(t2k+1 + · · · + t4k)] = 2kp2 = 1

2 , and similarly for t2, . . . , t2k. The expected
effect of t2k+1 through t4k is 14 .

Yet f is not concentrated at all! Indeed, using a Chernoff-type inequality
(such as Theorem 7.2.1), we see that the sum t2k+1 + · · · + t4k in the second
parenthesis is close to n1/2/2 with high probability. The first parenthesis, (t1t2+
t3t4 + · · · + t2k−1t2k), is always an integer, and so with high probability, f is
either 0 or at least about 4E [f ].
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Vu and Kim have developed a machinery for proving concentration of functi-
ons f that are “mostly” Lipschitz but not quite, such as T in our running
example. We briefly describe the setting and state one of their concentration
inequalities, reasonably general but not the most general available.

To apply the result, we need to suppose that f is defined on the product of
some probability spaces (Ωi, Σi, Pi), i = 1, 2, . . . , n, where each Ωi is a subset
of the interval [0, 1]. A typical example is Ωi = {0, 1}. We also need f to
be expressible (or approximable) by a suitable polynomial. More precisely, we
assume that there is a polynomial f̄ = f̄(t1, t2, . . . , tn) ∈ R[t1, . . . , tn] with all
coefficients lying in [0, 1] such that f(t) = f̄(t) for all t = (t1, . . . , tn) ∈ Ω.

Exotic as this condition might sound, it is often naturally fulfilled in com-
binatorial applications. In our running example with the number of triangles in
G(v, p), we have one indicator variable tij ∈ {0, 1} for each pair {i, j} ∈ ([v]2

)

of
vertices, and

T =
∑

{i,j,k}∈([v]3 )

tijtjktik. (9.2)

If f cannot be written as a suitable polynomial, it is sometimes possible to
choose another function f̃ that can be so expressed and approximates f . Then
one can apply the result below to show concentration for f̃ , and infer that f ,
being close to f̃ , is concentrated as well. (Let us remark that some of the results
below can also be directly extended to some functions other than polynomials;
see the reference given below.)

In the sequel, we will not formally distinguish between f (which is defined
on Ω) and the polynomial f̄ that extends f to the whole [0, 1]n. We thus assume
that f is a real polynomial defined on [0, 1]n. However, all random choices of the
variables ti are according to the distribution given by Ω. In particular, values
of ti not lying in Ωi have zero probability.

The Vu–Kim inequality asserts that an f as above is concentrated provided
that the expectation of each partial derivative of f up to some fixed order ℓ−1
is sufficiently small, and the maximum of all partial derivatives of order ℓ or
larger is small as well.

Namely, for the polynomial f as above and an j-term sequence I =
(i1, i2, . . . , ij) of indices, let

∂If =
∂jf

∂ti1∂ti2 · · · ∂tij

(this is again a real function on [0, 1]n). Further we let

Mℓ = Mℓ(f) = sup
t∈Ω, |I|≥ℓ

∂If(t),

where |I| is the length of the sequence I, and

Ej = Ej(f) = max
|I|=j
E [∂If ]

The expectation is with respect to a random t ∈ Ω; in particular, E0 = E [f ].
Heuristically, Ej(f) can be interpreted as the maximum average effect on f of
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any group of j variables, and Mℓ(f) corresponds to the maximum effect of any
group of ℓ variables.

In our running example, with the polynomial T given by (9.2), the degree of
T in each variable is 1, and so it suffices to consider sequences I with at most 3
terms, all distinct. We have ∂T/∂t12 =

∑

i>2 t1it2i, and so E1(T ) = (v−2)p2 =
Θ(ϕ(v)2/v) (exactly what we calculated before!). Further, ∂T/∂t12∂t23 = t13,
and similarly for all other pairs of edges sharing a vertex, while all the other
partial derivatives of order 2 are 0. Therefore, E2(T ) = p and M2(T ) = 1.
Finally, E3(T ) = M3(T ) = 1; note that Mℓ(f) ≤ 1 for any polynomial f of
degree at most ℓ with all coefficients in [0, 1].

Here is the promised inequality.

9.2.2 Theorem (Vu–Kim inequality). Let P1, P2, . . . , Pn be probability
measures on [0, 1], and let P be the product measure on [0, 1]n. Let f : [0, 1]n → R
be a function given by an n-variate real polynomial with all coefficients ly-
ing in [0, 1]. Let ℓ ≥ 1 be a fixed integer, suppose that Mℓ(f) ≤ 1, and for
j = 1, 2, . . . , ℓ−1, let Ej = Ej(f) be as above. Let τ ≥ √

log n be a parameter,
and set

E1 = max
(

E1, τ
2E2, τ

4E3, . . . , τ
2(ℓ−2)Eℓ−1, τ

2(ℓ−1)
)

,

E0 = max
(

E0, τ
2E1
)

.

Then
P
[∣

∣

∣f −E [f ]
∣

∣

∣ ≥ aτ
√

E0E1
]

≤ be−τ2 ,

where a and b are suitable positive constants depending only on ℓ.

If the quantities Ej decrease sufficiently fast, namely, if Ej/Ej+1 ≥ τ2 for
all j = 0, 1, . . . , ℓ−1, then E0 = E0, E1 = E1, and

√E0E1 is independent of τ (in
the appropriate range of τ). In such a case, the concentration is of the usual
Gaussian type (as in most of the inequalities mentioned earlier). But often we
get only weaker bounds; this is the case for our running example.

In that example, we have M2(T ) ≤ 1, and so we can choose ℓ = 2. As was
noted above, E0(T ) = Θ(ϕ(v)3) and E1(T ) = Θ(ϕ(v)2/v). Since we assume
ϕ(v) << v1/2, we obtain E1 = max(E1, τ

2) = τ2 and E0 = max(E0, τ
2E1) =

max(ϕ(v)3, τ4). If we use the concrete value ϕ(v) = v1/9 and consider only the
τ with τ4 ≤ ϕ(v)3, the resulting inequality is

P
[∣

∣

∣T −E [T ]
∣

∣

∣ ≥ aτ2v1/6
]

≤ be−τ2 ,
√

2 log v ≤ τ ≤ v1/12.

Rewritten in the parameterization by the deviation t used in the inequalities in
the preceding sections, this becomes

P
[∣

∣

∣T −E [T ]
∣

∣

∣ ≥ t
]

≤ e−αt/v1/6 , c1v
1/6 log v ≤ t ≤ c2v

1/3

for suitable positive constants α, c1, c2. Such kind of result is typical for appli-
cations of the Vu–Kim inequality; in some range of deviations, from logarithmi-
cally small to a small power of n, we obtain an exponentially decreasing bound.
The exact values of the exponents seldom matter much.
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Let us remark that the “obvious” first choice of ℓ in this example is 3, the
degree of T . Then M3 ≤ 1 is automatic, but the resulting bound is quantitatively
worse, as the reader may want to check.

There are other techniques that yield concentration results for the quantity
T and in some similar situations (for example, the Janson–Suen inequality—
Theorem 7.4.3). But the Vu–Kim inequality currently appears as the most ge-
neral and flexible tool, and in several applications it provides the only known
path to the goal.

Theorem 9.2.2 does not cover deviations of logarithmic order, and so it
typically does not work very well for functions with logarithmic or smaller
expectations (for ϕ(v) much smaller than log v in our running example, say).
There are more precise versions covering such situations as well. These and
other variations, as well as a proof of Theorem 9.2.2 and further applications
of it, can be found in the survey paper

V. H. Vu: Concentration of non-Lipschitz functions and applications,
Random Structures & Algorithms, 2002, in press.


