Lec 5
GAPS FOR MAX-CUT
\qquad
\qquad

Last time: the GW algorithm.
QR:
$\frac{\text { GP: }}{m}$
$\max \frac{1}{4 m} \sum_{\{u, v\} \in E}\left(x_{u}-x_{v}\right)^{2}$
SP:

$$
\begin{aligned}
& =\frac{1}{2}-\frac{1}{2 m} \sum_{\{u, V\}} x_{u} \cdot x_{V} \xrightarrow{S D P}=\frac{1}{2}-\frac{1}{2} \mathbb{E}{ }^{E \in} x_{u, V} \\
& =\frac{1}{2}-\frac{1}{2} \stackrel{\in E}{\left.\mathbb{E}_{\{u v\}}\right\} E^{2} x_{v}} \overrightarrow{\text { relax }} \quad X \geqslant 0 \\
& \text { st. } x_{i} \in\{ \pm 1\} \forall i \\
& \operatorname{deg}(x)=\overrightarrow{1}
\end{aligned}
$$

Rounding: 1) $X=Z \cdot \mathbb{R}^{n \times n}$ (Cholesky Factorization)
2) Choose $g=\left(g_{1}, \ldots, g_{n}\right) \backsim \begin{gathered}\text { std-gaussian } \\ \text { vector }\end{gathered}$
3) Set $x_{u}=\operatorname{sign}\left(\left\langle g, z_{u}\right\rangle\right)$ for all $1 \leqslant u \leqslant n$

Analysis: For every $1 \leqslant u, v \leqslant n$, if $\frac{1}{2}-\frac{1}{2} x_{u, v}=1-\eta$ then, $\mathbb{E}_{x}\left(\frac{1}{2}-\frac{1}{2} x_{u} \cdot x_{v}\right) \geqslant 1-2 \cdot \sqrt{\eta}$.

Equivalently,
SDP assigns vectors of unit length to each vertex in V.

$$
\begin{aligned}
u \rightarrow & \vec{u} \cdot \\
\text { SDP value }= & \frac{1}{2}-\frac{1}{2 m} \sum_{\{u, v\} \in E}\langle\vec{u}, \vec{v}\rangle \\
= & \frac{1}{2}-\frac{1}{2} \underset{\left\{\begin{array}{l}
\{u, v\} u E
\end{array}\right.}{ }\langle\vec{u}, \vec{v}\rangle \\
& \text { uniformly vandom } \\
& \text { edge }
\end{aligned}
$$

General helpful top:
set \longleftrightarrow uniform distribution on the set.

SDP value

$$
\frac{11}{S D P(G)}=\frac{1}{2}-\frac{1}{2} \underset{\{u, v\} \in E}{ }\langle\vec{u}, \vec{v}\rangle
$$

Recall: If $\langle\vec{u}, \vec{v}\rangle=\rho$, then
SDP: $\frac{1}{2}-\frac{1}{2}\langle\vec{u}, \vec{v}\rangle=\frac{1}{2}-\frac{1}{2} \rho$
rounding: $\frac{\mathbb{F}}{x}\left[\frac{1}{2}-\frac{1}{2} x_{i} \cdot x_{v}\right]=\frac{\operatorname{arc}-\cos (\rho)}{\pi}$ rounded $\{ \pm 1\}$-cord.
ρ_{*}. minimizer of $\frac{\frac{\arccos (\rho)}{\pi}}{\frac{1}{2}-\frac{1}{2} \rho}$ $\rho_{*} \approx-0.69$, min-value $\alpha_{G W} \approx 0.878$:.

Motivating question: Is there a better algorithm? Is there a better rounding of the same SDP? Explore via "gaps".

Integrality Gap: "how far" can the SDP(G) objective value be from max-cut (G) ?
Lemma (Qualitative Integrality Gap)
For every $k \in \mathbb{N}$, there's a graph $C_{2 k+1}$ on $2 k$ vertices such that
but max-cut $\left(C_{2 k+1}\right) \lessgtr 1-\frac{1}{2 k+1}$
Proof: graph $=(2 k+1)$-length cycle.

$$
\max -\cot \left(C_{2 k+1}\right)=1-\frac{1}{2 k+1}
$$

How do we prove that $\operatorname{SDP}\left(C_{2 k+1}\right)$ is $1-O\left(\frac{1}{k_{2}}\right)$? must produce feasible sol \equiv unit vector assignment
to vertices.
\Leftrightarrow

$$
\begin{aligned}
& \underset{\left\{\mathbb{E}_{1, v\} \in E}\right.}{ }\langle\vec{u}, \vec{v}\rangle \leqslant-\left(1-O\left(\frac{1}{k^{2}}\right)\right) . \\
& \Leftrightarrow \underset{\left\{\mathbb{E}_{u, v \in E}\right.}{\mathbb{E}}\langle\vec{u}, \vec{v}\rangle \leqslant-\left(1-O\left(\frac{1}{k^{2}}\right)\right) \text {. } \\
& \{4, v\} \in E \text { must-pace end posits of edges at as }
\end{aligned}
$$ large an obtuse angle as possible:

Idea:
the pie is divided into equiangular, odd \# $2 k+1$ of equal size sectors. the construction ensures that neighbors are at an angle of $k \theta_{k+1}=\frac{2 k \pi}{2 k+1}$

$$
=\pi-\frac{\pi}{2 k+1}
$$

 $=$ unit circle in the plane.
vertex $j \longrightarrow[(j \cdot k) \bmod 2 k+1] \cdot \frac{2 \pi}{2 k+1}$ angle
$j \leftrightarrow(j \cdot k) \bmod 2 k+1$ is a bijection on $\{0,1, \ldots, 2 k\}$,

What's the SDP value?
End point of all edges are at an angle of $\left(\pi-\frac{\pi}{k+1}\right)$.

$$
\begin{aligned}
\mathbb{E}\langle u, v\} \in E
\end{aligned}\langle\vec{u}, \vec{v}\rangle=\cos \left(\pi-\frac{\pi}{k+1}\right) .
$$

The above example gives an citegrality gap that matches the qualitative approx-curve of GW.
Tighter example?
Cycle \sim embeddable on 2D unit sphere
Feige-Schechtman'O1: A higher dimi generalization of the $2 d$ construction gives the exact $\alpha_{G W^{-\varepsilon}}$ integrally
gap for every $\varepsilon>0$. gap for every $\varepsilon>0$.
Theorem [Feige-Schechtiman]: For every $\varepsilon>0$, there is a graph G such that

$$
\max -c u t(G) \leqslant\left(\alpha_{G W}+\varepsilon\right) \cdot S D P(G) \text {. }
$$

We will sketch the construction here.

Preliminary considerations:
Suppose we construct GCV(E) with an embedding $V \rightarrow S^{d-1} \rightarrow$ unit didcm sphere

$$
u \rightarrow z_{u}
$$

st. $\{u, v\} \in E \Rightarrow\langle\vec{u}, \vec{v}\rangle \approx \rho$
Then SDP(G) $\approx \frac{1}{2}-\frac{1}{2} \rho$.
For integrality gap to be $\alpha_{6 \omega} \sim 0.878$,
we need max-cut $(G) \leqslant \alpha_{t w}\left(\frac{1}{2}-\frac{1}{2} \rho\right)$.
But max -cut $(\sigma) \geqslant \operatorname{alg}_{G W} \geqslant \frac{\operatorname{arEcos}(\rho)}{\pi}$
So: we must have $\rho \approx \rho_{*}$ and. $\operatorname{alg}_{G W} \approx \max -\operatorname{cut}(G)$.

We will define a graph directly by giving an "embedding" on to the unit d-dim Sphere.
Def (Embedded graph)
An embedded graph $G\left(V_{L} E\right)$ is a weighted graph such that $V \subseteq \subseteq d_{u}$-de munit sphere for some.
Let $O b j(G)=\mathbb{E}_{\{u, x\} \in E} W_{u, v} \cdot\left(\frac{1}{2}-\frac{1}{2}\langle\vec{u}, \vec{v}\rangle\right)$
Prop: $\operatorname{Obj}(G) \leqslant \operatorname{SOP}(G)$.
Proof: use Z_{u} s to get feasible SDP solution of value $=O_{b j}(G)$.
To ensure $O b_{j}(G) \sim \frac{1}{2}-\frac{1}{2} \rho_{*}$, must ensure $\langle\vec{U}, \vec{v}\rangle \sim \rho_{*} \forall$ $\{u, v\} \in E$.

We'll construct an "infinite geometric graph" and then discretize it.

$$
\text { Vertices }=S^{d-1} \text { : }
$$

all possible points on the surface of the unit sphere.
Edges \sim prot dist ${ }^{n}$ over pairs of unit vectors.
will be symmetric (i.e probe of

$$
\begin{aligned}
& \text { will be symmetric } \\
&\left.\left.W_{1}, w_{2}\right)=\text { probof }\left(w_{2}, w_{1}\right)\right) . \\
& \text { Then, Obj }(G)= \mathbb{E}\left[\frac{1}{2}-\frac{1}{2}\left\langle\overrightarrow{u_{1}} \vec{v}\right\rangle\right] \\
&\left\{u_{1} v\right\} \\
& \sim E
\end{aligned}
$$

What about max -cut (G) ?

Every cut is a subset of vertices.
三 ± 1 ridicator

$$
\equiv f: S^{d-1} \rightarrow\{ \pm 1\}
$$

Thus,

$$
\begin{aligned}
& \max -c u t(G) \\
& =\max _{f: V \rightarrow\{ \pm 1\}} \mathbb{P}_{r}[f(u, v\} \cup E \in f(v)]
\end{aligned}
$$

[overlooking the issue of existence of the max]
Edge Distribution:

$$
\begin{gathered}
\text { uniform draw } \equiv \begin{array}{l}
\text { pick } \vec{u}, \vec{v} \text { uni iformly } \\
\text { from } E \\
\text { conditioned on } \\
\langle\vec{u}, \vec{v}\rangle \leq \rho_{*}
\end{array}
\end{gathered}
$$

Fact: $\begin{aligned} \mathbb{E}[\langle\vec{u}, \vec{v}\rangle & \left\langle\langle\vec{u}, \vec{v}\rangle \leqslant \rho_{*}\right] \\ \vec{u}, \vec{v}, \mathbb{S}^{d-1} & \geqslant \rho^{*}-O\left(\frac{1}{\sqrt{d}}\right)-\end{aligned}$
"L magic of high dim geometry"
So: we immediately ensure that

$$
O b_{j}(G) \geqslant 1 / 2-1 / 2 \rho_{*}-o_{d}(1)
$$

What about max-cut (G) ?
Say optimal cut is (A, \bar{A}) for

$$
A \subseteq S^{d-1}
$$

$$
\begin{array}{ll}
A \subseteq S^{d-1} & \text { fractional } \\
\text { "\#vertices" }= & \text { surface area of } A . \\
\text { in } A & =\text { a clay). } \\
\mu_{e_{*}}(A)= & \text { frac of edges crossing } A .
\end{array}
$$

$$
\mu_{\rho_{*}}(A)=\operatorname{Pr}_{\{u, v\} \cup E}[A(u) \neq A(v)]
$$

where $A(u)=1$ iff $u \in A$.
hardest part of proof:
The: $F(x \quad 0 \leq q \leq 1 \& 0 \geq p \geq-1$.
Then, max of $\mu_{\rho}(A)$ where A ranges over all measurable subsets of S^{d-1} of frac surf area a is attained for "cap" of surf area a.

Cap: points on one side of some Lepperplane cut $\equiv\{\vec{u} \mid\langle\vec{u}, h\rangle \geqslant \tau\}$

Feige-Schechtman argue in fact that $\mu_{p}(A)$ is maximized at hemispheres.

any point $p \in H / C$ has more edges going ont of H than into C. So adding P to c con'thart.
all hemispheres have same size cuts by symmetry.

Observation: Cut output by
GW ago is a hemisphere.
$g:\left(g_{1} \ldots g_{n}\right) \backsim$ std gaussian vector

$$
\text { cut }=\{\vec{u} \mid\langle\underbrace{\langle g, \vec{u}\rangle \geq 0}\} \text {. }
$$

hemisphere!
So GW outputs optimal cuts in the graph \rightarrow \& they have the value $\sim \frac{\arccos (e)}{\pi}$.
Final construction: vertex = regions of sphere of frac surf area $=\varepsilon$.

This yields an integralitygap of $0.878+\varepsilon$.
Note: On instances that achieve the integrality gap, GW ago outputs optimal carts!
So the algorithm act wally does as well as it possibly could.

Algorithmic bap.
Ave there instances G where $\lg _{G W} \leq\left(\alpha_{f W}+\varepsilon\right) \cdot \max -\operatorname{cut}(\theta) ?$ for arbitrarily tiny ε er.

In this case, clearly,

$$
S D P(G) \approx \max -\operatorname{cut}(G)
$$

$\mathrm{Alg}_{G W}$ is a function of the SDP solution \rightarrow there are multiple SDP solutions of optimal value. In particular, the integral sols!
Clearly, $A l_{G \omega}$ cannot be工 $\alpha_{f \omega}$ max-cut (G) if SDP solution is integral opt

Theorem[Karloff] For all $\varepsilon>0$, There is a graph G ard an spinal SDP solution $\{u \longrightarrow \vec{u}\}_{u \in Y}$ st.

$$
\begin{aligned}
& \operatorname{SDP}(G) \leqslant \max -c u t(G)+\varepsilon \& \\
& \operatorname{alg}_{G W}(G) \leqslant\left(\alpha_{G W}+\varepsilon\right) \cdot \max -c u t(G) .
\end{aligned}
$$

Proof: We will again define the graph together with an Optimal) embedding.
Our graph (embedding) $=\left\{+\frac{1}{\sqrt{d}},-\frac{1}{\sqrt{d}}\right\}^{d}$ "hypercube" with labels normalized
to be of length $=1$.
As before we must add edges between pairs where the inner product is $\approx \rho_{*}$.
Edge dist $: 1$) pick \vec{u} uniform $\left\{\frac{1}{\sqrt{2}}\right\}^{d}$
2) negate each coordinate undep w.p. $\frac{1}{2}-\frac{1}{2} \rho_{*}$ to get \vec{V}.
3) output (\vec{a}, \vec{v}).

$$
\begin{aligned}
\mathbb{E}\langle\vec{u}, \vec{v}\rangle & =\frac{1}{d} \sum_{i} \mathbb{E} \vec{u}_{i} \cdot \vec{v}_{i} \\
& =\frac{1}{d} \cdot \sum_{i} \cdot\left(\frac{1}{2}+\frac{1}{2} e_{*}\right)-\left(\frac{1}{2}-\frac{1}{2} e_{y}\right) \\
& =e_{*} \cdot V
\end{aligned}
$$

$$
\begin{aligned}
O b_{j}(G) & =\mathbb{E}\left[\frac{1}{2}-\frac{1}{2}\langle\vec{u}, \vec{v}\} \in \in\right] \\
& =\frac{1}{2}-\frac{1}{2} \frac{\mathbb{E}}{\{4, v\} \in E}\langle\vec{u}, \vec{v}\rangle \\
& =\frac{1}{2}-\frac{1}{2} e_{*}
\end{aligned}
$$

Fact: Pr $\left.\left[\left|\langle\vec{u}, \vec{v}\rangle-e_{*}\right|\right\rangle \frac{t}{\sqrt{d}}\right]$

$$
\{\vec{u}, \vec{v}\} \in E \leqslant 2^{-O\left(t^{2}\right)}
$$

(Chernoff bound).
So most edges ir fact have the corresponding inner product

So, GW will output a cut of value $\sim \frac{\operatorname{ar} e-\cos \left(e^{*}\right)}{\pi}+o_{d}(1)$
We will prove, however, that there are cuts of value $\frac{1}{2}-\frac{1}{2} e_{*}$.
Dictator Cuts:

$$
D_{i}=\left\{\vec{u} \left\lvert\, \vec{u}_{i}=\frac{+1}{\sqrt{d}}\right.\right\}
$$

What's the size of these cats?

$$
\operatorname{Pr}_{\{\vec{u}, \vec{v}\} \in E}\left[D_{i}(\vec{u}) \neq D_{i}(\vec{v})\right]
$$

$$
\begin{aligned}
& =\operatorname{Pr}\left[i^{\text {th }} \text { coord. of } \vec{u}\right. \text { is flipped] } \\
& =\frac{1}{2}-\frac{1}{2} e_{*} .
\end{aligned}
$$

Are we dove?
We've shown: $\operatorname{Obj}(G) \sim 1 / 2-1 / 2 \rho_{x}$

$$
\begin{aligned}
& \operatorname{alg} G \omega(G) \leq \frac{\arccos (f)}{\pi} \\
& \& \max -\operatorname{cat}(G) \geqslant 1 / 2-1 / 2 \operatorname{S}_{*} .
\end{aligned}
$$

Need toshow our embedding is optimal. That is, there is no other better SDP solution.

This needs some very basic Fourier analysis that we will see in a later class.
Fact (Dictator is Stablest):
Let $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$. Let

$$
S_{\rho}=\underset{\substack{(x, y) \\ \sim E}}{\mathbb{E}}[f(x) \cdot f(y)]
$$

Then $\quad S \rho(f) \geqslant \rho \cdot \mathbb{E}_{x} f(x)^{2}$
How does this help?
Let $Z:\{-1,1\}^{n} \rightarrow \mathbb{S}^{d-1}$ be the SDP embed deng.

Then, let $F_{j}(x)$ the $j^{\text {th }}$ coordinate of $Z(x)$. for every $x \in\left\{ \pm(\}^{n}\right.$. Then $\sum_{i=1}^{d} F_{j}(x)^{2}=1$.
Then, $\mathbb{E}_{(x, y) \cup \mathbb{E}} F_{j}(x) \cdot F_{j}(y) \geqslant \rho \cdot \mathbb{E}_{x} F_{j}(x)^{2}$
Add from $j=1$ to $d \&$ use that $\sum_{i=1}^{d} F_{j}(x)^{2}=1 . \quad \forall x$.
Comments:

* Hypercube vs Sphere
rounding seems to behave the same but hypercerbe has special large dictator cats. Sphere doesn't.
* Can we strengthen the SDP Velayation so that sphere is no longer an integrality gap?
YES! "degree 4 sum-of-squares"
Does it help improve Goemans Williamson? We do not know.

