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Lectured : Max-Cut, SDPS

TheProblem_ :

Input : G =④E) : graph
on n vertices , m edges

G_Ñ compute SEV s -t lE(£ is maximized.
I

we'll simply call itmay-cut←
"normalized
Max-catch

.

"

Et : Computing Max- cut CG) is
NP-hard .

If : Reduction from Max Independent set
.

Remark : You may recall
that min-cut (G)

⇒computed in polynomialtime
. what

a difference min vs may
makes. !

AppmalitgihmfÉt
• I - approximation is easy .

Lexa : Let s be a uniformly random set
of vertices of V. Equivalently , choose

each

v E V to be in S w - p
- I independently of others .



then ,
Es%]>_ ±

Since max-cut (G) 51 , this gives a £ approx
-

"

surrogate forMax-cut (G)
= m

!

RIF : E [ edge {un } is
cut]=L .

Apply linearity
of expectations .

don't need to use randomized algo
.

Locatserch:D start from any
cat s

2) If there's a
v such that

moving v
to the other side

of the

cut improves
cat size , do

it .

3) stop when
there's no suchv

&

return the resulting
cat .

Amalfi : Exercise .



Question : Is there a >I factor approx .

-

algo for Max
- Cut ?

Set cover : LPs helped . what
about here?

→ quadraticprogram

•
QP for Max- Cut

Max ⇐ I ⇐a-xD
'

e= {4N }☐EE

s -t . xu C- {-1-1} for
all u E V .

e
{-1-1}
"

Every x= (Ku)uev
is a

"
1=1

"

indicator ofaset
of vertices .

the objectivefunction computes
the

size of the cent defined by K .



Clearly , QPS are NP-hard
to solve .

Can we relax&→nd them ?

• LPsforMat
must

" linearized the objective
.

I Yum
e-- {um } → standing
C- F-

for
Yun c- [0,1]

Clearly useless .

Can we add additional
constraints ?

r|[-w no cat can
"
cat

"

all

3 edges .



•For every { 4,4W
} = Din G ,

Yuu + Yvw 1- Yuw I 2 .

Do they help ?kggany
linearconstraint

that is feasible . - .

N-OPE.int#o : let 2K¥ G-

3
-¥4

Then clearly 91,2 - Y z, z = - -
= Ys

,
1--1

is a solution .

In fact, we know that for
some

C C- [Oil] , we
need at least

ZÑ conetraints to einprove an
I approx .



tact : [ kg Meka, Raghavendra
' 187

Beating I for Max
- Cut requires

> zñ size
" extended formulations

"

for some
constant c>o .

d-regular

Bvieflntuihon : There aregraphs G.
E

s .t . Max- cut CG ,)-
1 (almost bipartite

Max
-cut CGD- £ (

"minimal
" )

but local neighborhood around every
vertex in both G ,

&G- looks

exactly the
same

.
Both are

C-D- regular
trees .

LPs , local algorithms seem unable

b- distinguish between such pairs .



Movingon-i.cm#m
non- linear constraints on Yun,

that provide more power
?

ideas objective : ¥mE cxu- ✗v5
e-{4N}
C- E

2- 2 Xu - Xu -= ¥m
quit } EE

= I - Em
{uneEkiti



inobservation :
-

µ =fiiii.in/--xinxnmatrix 70
with diag --

I #
positive semidefinite

Anewvelaxaton :

Max E- Em -2 Xun
e- { uit
C- F-

It . diag☒1--1 →
linear
constraint

"

nonlinear ← ✗ 70
constraint

"

relaxatonbecause we forgot
"rankl

"

constraint



Hour : Semidefinite Programs
a class of coniex programs

.

linear
←max IGEXI

objective
st . ✗ E K

← t

convex convex subset

program of IRN

CAUTc0N_ °
.
Convex programming

in general is
NP-hard .

Convex f- easy

but some convex programs
are

"solvable
"

in polynomial times



egg . Linear Programs
K = intersection of linear

inequalities
= {✗ 1 AYE bit lsism}

Defcsemidefniteprograms
An SDP in nxn matrix

valued variable ✗ is a
convex

program
where

k={ ✗ EOKAin# be}
for Isism

j¥Aicjik) -Xcjik)=Frobenius innerproduct
CHWO)



SDPs can be solved approxu.gr?atdy-
via ellipsoid method .

We'll study this in
more detail

eai last two weeks
of this

course .

-

sDPsf%?¥É!zm§yeÉ""
G-④E)

sit diag CD =L

✗70

- |sDPCG#



Rounding C Goemans
-Williamson

'

95)

theorem : there's a poly time randomized

algorithm that takes input
✗ : ✗ to & Xii

=L if i

and outputs an K
C- {-1-1}

"

s -t . for every Ki,j Sh ,

if ⇐ - EXUDE 1- E

then #⇐ - Iki✗if 21-2
re

Further : E¥÷¥Yhosts . -



Kary : There's a Cgs)

approx
. algo for Max -Cut

for C- I-E & S= 1- WE for

every
E > 0 . Further, the

approx
. ratio of this algo is

2 0.878 .
.
.

Pro_of : Let G be agraph .

and SDP (G) = C with

optimal solution ✗
.

Trinh : SDP (G) 7 Max
-catch .

Why ? SDPCG)
is a relaxation .

☒= aol.se?Tis
" feasible

"

)



On the other hand
,
theorem

eaiplies that
we can find

0C such that

¥ I- E ✗uxv 7 1-We

take average
of LHS over

{4N } E E of G
.

then ¥ cutgcx) Y 1- 2k

Scimitar argument for
approx

. ratio .

☐ .



BAS1CF- ( may notprove
in lecture

lemm-acchdeskyt-a-torizat.in
For every

✗ ERM
"

,
✗YO ,

there is a 2- c- 112mm
s -t -

✗ = ZZT

Piroof: ✗= What
f-

diagonal Eigenvalue
matrix decomposition

Xiao ⇐I has non-neg digs
.

Let 1¥ entry wise square root



of I.

set 2-= @it) .

Then ✗= ZZT ☐ .

|DefCGaassian#
SdtDFCX)=¥*é¥
std.Gaussi-aner.ch , - -

.

,%)
\ " "

independent std .

gaussians .

prop-r.CRotationlnv-an.ae
HE 112mm

, orthogonal Cie - HTH-HHEI)

g : Std
. gaussian vector in Rn

-



then , Hg has samedistr as

g.

If: PDF of g = ¥yn e-
9¥
?

T.FIe-
"

11×1122 = 11

HxlL2Clzhovmisrot.uivainant.Corollarg_1iLet@iitDbestd.Z
D gaussian vector . Then

the point 4¥,;%÷) is uniformly
distributed on the wait circle .

If : Let U= Child, 11=(4/4) sit .

uit ui=vF+vE= 1
.



Then there's a H , orthogonal s -t -

Hu = V : By rotation invariance

PDF at U = PDF at V.
☐ .

Corollaries: Let Z ,,ZZEIR
"

be unit vectors . s.tt . 9--42-1,2=7
-

8- (8 ,, - - ,gn) : n-D Std . gaussian
1

Then

(
42-1187

<Zzg>)~(
9

l-pt.gz-p.gr?Proo-f:There's an orthogonal
matrix Hst . Hz ,

= e
,

H Zz= ftp.ez-of-e,



use rotation invariance -

☐ .

-

Proofoftheorem

Rounding ? 1) Compute 2- : ✗
= zzt

-

2) . Generate g=G ,
- - .sn)

from std . gaussian dist
?

3) For each u , set

✗ice
= signGg,Z ;D



tt-nayssofRouade.gg= (8 , ,
. . , gn) : std . gaussian

vector

Fix U , ✗ C-V. .
then

CXu , ✗ × )
has same

disth as
Sgn ¢8 ,_ZnKqz⇒)

We care about the random
variable

E-tzxuxv = {
0 it ✗u=×v

1 if Xutxv .

t
expectation = Pr [

value= I] .

Thus we are interested in the

following elementary question



Eton : Let Csi , Sir ) be

jointly distributed
as a 2-☐ Gaussian

withmean 0g Cor= ⇒
what's the chancethat Xutxx ?

YEEi÷¥⇒
Such that 4 Zu,Zu >

= Xu✓ = -1+2

Let ⑨ ,
.
. - -gn) = Std . gaussian vector

Pr [ ✗utxv] = 1T¥ + OCÑ
"
)

:÷:÷÷÷÷÷÷÷
.

1×4×1<-1 .
To seewhy use wtxw 20



Brod:
"
reduce b- 2d geometry

"
-

2- = ( 2- 1 ,
-
-

y
Zu
,
- -

,-24 . - . . Zn)

I 1

rows of 2-

8 = ( 8 , ,
. . ,8n) : std . gaussian

then "

[
2-
wig>

Tzu,gy)~(
&

⇐+D8,
-1211T¥



g.
,

i 2- v

É
zu

Pr [ ✗u=/ ✗v3

=Pr [Sign (g) =/ sign (-4+1)%-12yF[8D]

= I



thus,
Pr [ xnxx.is = 9¥ .

= arctos (Xuv)
→

Parameterize Xuv =
- city .

arc-cos C-ctrp)
= IT- arc-cos (1-1) .

arctos a- g)
= Ent (21-1%+042)

plugging in :
Pr [ ✗ut ✗D= 1- 5¥-104%)

/



Use calculus/Mathematica to minimize

¥•Y→ -
over our .

minimizing ② a✓
: - 0 . 59

Mui value : 0.878 .

☐ .

Can we improve
GW ?

Yes !

1) For bounded degree
graphs ,

can beat 0
-878

2) There is a rounding
that does

better than
GW in some regaines

.

Can get a better
cc , s)

-approx . curve .

[ O
'donnell -Wu] .



Even better ?

Next time : limitations of GW algo

Future : UGC
and

"optimality
"of

the above alg


