


↳ a few

basic techniques

Eigenvalues of matrices (e.g- Cheesed
SDPS ( e.g- max-cut )

LPs ( e.g.
setcover)

denier equation solving leg
. sat

instancesof
•

: UG)
How do we implement these primitives?

→Several of the tunes
we applied

these methods ,the inputs,
the

outputs or sometimes
both were

real numbers .



But our computers & our models

for them are still
•digital .

Every algorithm eventually should

be a WORD -RAM m /c.① RAM memory

②W : word size , w
~ 0Clog n) .

③arithmetic operations on w
bit

integers canbe done in
OCD time .

What about real numbers?

Howdo we computeon real numbers
?

Anew : We don't .

Lessgwu : Must approximate
"

by rationals & hope for
the best .



You might think such
details

just work out
. But they can

be

anywherefrom easy to
nontrivial

to impossible
.

In fact,it is often
assumed that

basic operations on
real #s can

bedone in
Oct ) tune

-

.

what

are basic operations
? One might

hopethat these canbe implemented
on TMS/ digital computers

with

poly cus slow
down . So no harm , no

foul & great convenience .



hhatareloasi- operations ?

Addition

Multiplication Some subset

Division ? appears tomake

the model

Sqhevevoots ?www.onabeecsohesroundingtointegers?moduhs?PsPA"⇒

Canwegistkeeparlthmeticops
and work to get reasonable

results ?

Also fraught with some issues
.



SUM OF SQUARE ROOTS PROBLEM

Gwen 2 polygons in plane
with

integer coordinate
vertices

,

decide

which one has alarger perimeter

⑦ 1 , 9 ,) .
-
- . Ckniyn ) → Polygon I

CU , , v1 ), - - .
.

,
can , Vn ).→ PolygonL

E.YC-yi-F-cxi-xi.is#s?E@i-ui-D4cr-i-vi-5-
Similar issues in -

.
.

Euclidean TSP, Euclidean ShortestPaths,



Cangive a PSPACE algo forSOSR

(also knownto bein ppp
PPPP

(4th level of counting hierarchy) .) .

Not known to be even in NIL
'

01h) time on
"real RAM

'
-

BtEmr : poly lime
randomized

algo b- decide if
two bums are

equal . but cannot decide
while is

larger .

Moira: Got to be somewhat careful



of numerical issues . Can't always
expect them to work themselves

out
Today : Solving

Linear Equations

→ inpint numbers are
rationals .

→ rationals described by a pair
of integers .

0¥ : givin Ig
,

,¥ ,
can

1) add 2) multiply ↳
divide

in poeycuipwt-size) time .



why? e)¥
,

+ Eg; PihÉÉ
If all Piiri are

m-bit long

integers, then
their sum

is at

most 2m -12
bit integers

in

mum/ den .

a) division Pg÷Ff2%¥
3) multiplication P÷¥~FY¥g.
Let's now considerthe primitives
we saw :

.
.



Linear Equation
Solving
Given A c- Q

"? be Q? find
✗ s ti Ax=b if it exists .

Is therea poly-size representable
solution?

Cramerisrule : ✗E- d;t¥¥_
where Ai : replace Ehud by bus

Props : If all entries of A are

integers of E b bits , delta)
is an integer off nlognt ntogb

bits



Prof ' def (A) = ETIACI, oci )) -

synch
or :[nj¥in]
Perm .

/details nl.mg/EnAci,rciDI
I n ! 26N .

D .

thus
,
each ✗ i = d¥¥¥ can

be written in SOK.bg n+ n
- b)

bits .
= poly ( input

-size) bets .

if It is an integer
- entrymahix.at

if A's entries are not

integers ?



Can take
"
common denominator

"

of Ñ entries . Ifall entries are

tobitlong,
the common denominator

reign? b bits long .

E making A's entries integers
amounts to multiplying all

entries by an integer of
en
? b

bits .

→ at most poly blow

up
to the bit complexity .

( b- bit entries → suits bit
rationals integer entries



E.igenvalnesofmahixA-c.cm
" ?

A- (ft ) : eig=±E .

even integer matrices can have
irrational eigs .

§ , must
resort to approximation

.

Note : can
write down an Eevror

approx in
O( logy,) bits

.

tineanprogrammiy
Max CTX C

,Ae@mxnEgns.t
. Ahab

pdycn > bit
pis osx<_B¥nteger .



Fact : If LP is feasible then

there is an optimal solution

with polychin, b) bits
where

G- bitcomplexity of entries

of A, b-

Can we always have LPs in the
form above ?
"

✗a- B
"
→

"

Bounding Box
"

i constraint -

In our applications, B can
often be

1 .



We will now see an algorithm
to solve linear equations over

Q in polynomial temi
in

the size
ofthe input .



thpnt : AEE"Éaij ) of integers
of at

most in bits .

b c- zh :
with sin

bit integer
entries .

Goats find ✗ s -t .

A✗= 6 . ifit exists .

911 912 - - - 9 in

) c- nxn .

:
ah , 9h2 Ann



0b€ : the following operations
do notchange solution set of

the equations .

non- zero

① scaling equations
.

or

E.Ali Xi
= bi

111

I.saw ✗i = s . bi

② Subtracting an equation from
another



Idea :DSubtract appropriate
scalings of the 1st equation
from all others ⇐ make

1st Col 0 for rows 2£
is n : A-- A'

"
→ A
"?

2) subtract appropriate scaling
of the 2nd equation to

make

2nd column 0 for equations
A'"→ A

"?
I=3, - -

,
n

{ s
1

AM
At the end , wehave a

Upper triangular matrix = A
")



O o☒✗ = 6
O O

O
O

O O O O

t

easy
to solve by

" solve & substitute
"

learn ✗
n from last equation .

Substitute ✗n in
2nd last

equation to learn ✗n- ,

and so on - n



Pivots : Our discussion assumed

that 911=0 . And
then for

the matrix Ac" obtained after

Zeroing first
column
,
that a¥-0

'

.

.

what if en Ack
- "

,
aÉÉ=o?

Ideas:DIf equation i. for ke ien

⇐ row i of Act
-

D) . has a

non-zero entry in column Koos

can
"

swap
" b- make rowi

= row K of ACK
-

D)

2) what if all rows i forks is n
have zero air k-th column ?



If some columnksjsn has
a non-Zero entry inarowksisn
their swap jth column

with Kth .

row swap
= reordering equations

Col swap = renaming
variables .

3) What if the
dude block

rows ksi.sn

cols ksjsn
is all zeros ?

Then
,
done ! We've identified the

affine subspace of solutions !



What's the tune complexity
Each elimination step involves

n multiplications , n2 subtractions

and additions . So OCR)

arithmetic operations on b-
bit

numbers .

There are n total elimination

steps . → So OCn3) arithmetic

operations .

Substitute and solve takes

OCD -10C 2) + . . + Och)

= OC h2) .



So all in all
,
we take

0(n3) arithmetic operations .

But is thattherunning
time?

In the 1st step , we are doing
arithmetic on b bit #s .

So takes pdyc b) tune
'

for

each operation .

But what about subsequent steps ?
Let's write down what happens

to the entries of the matrix after

the K-th elimination step .



Let aijk
")

: entries before kth

elimination step .

ay.tk) : after Kthelimination

step .

Then
, ifiskjsk-lgaijk-I-q.IT

Since we only modify rows
kthrough

n in the Kthelimination step
.

If i > K
, j⇐ K-1,

then

aijk-D-aig.KZo .

We can assume WLOG
that a¥¥

is the pivot (otherwise we
can do

some row/ad exchanges)



For i>k+bj7k ,

aijk-aijk-Iai.IE?aai÷¥¥,
Note that this ensures

that
-①

ai,Ék)= Of ink-11

① is sane as

a
'
= aij÷"aa¥¥?akj÷"aii
F ii

kfaiii.AE" |aij¥De¥¥fi-ai ai-
↳ ☒DCk-DE 2×2



Examining① , observe
that the

Akj"g¥É
"

involves multiplying

2entries of Ack
"? So bit

complexity becomes
twice that

of the entries of
ACK-1)

bitcomplexity ACKD 52
bit-comp( Ack

"

) +- .

best we can expect from this recursive

bound is
°

. bit-complexity( Acn) E I. b
t

exponentially large numbers
.



Thus
,
the naive upperbound seems

to suggest a exponential blow up
in the bit complexity of the

intermediate rational
numbers obtained .

It turns out that this bound is pessimistic
.

The key observation
is thefollowing

Clarin of Edmonds (
1967)

lemmai-T-oreverykgereryentrgof~AH.isa ratio of determinants
of

;:÷÷:÷*Notice that this lemme immediately

all entries of Ack) . is at most

log Cn 1. 2b n ) s n logan + nb
.



Proofoftemma : Very slick proof .

Keith : If you take any
matrix A

and produce A
'

by operations of theform

ai
'
= ai - scaling - Aj

t
ithrowof A

' ¥hrowofany rational
# .

÷÷÷÷÷÷:÷¥÷:÷_
with 1st K rows & ads of Ack

)
.

Let Dijk be the ktl by
Kel

matrix with 1st k rows
& it

vowof ACK) & 1st K cols &

jthcd of ACK
)

.

Then

aijkt-dqtef.FI??-,



Consider the matrix Note : Can
7-

1k assume i,j >1kt
.i.fm#::::::Caijk1-ay..k-'?i.*;

aijk7=0

Dijk) : first Kronos & ith
row of ACK)

first leads &jth
Col of ACK) .

☐

'K )
: first K rows

& cols of

"

µ.

Then note that
*
←detCDH-a.it?aii?..aEii.&de-tCDijkJ--aik!aiE!...qiii!aij"

☒s



Noticethat both ☐
""& Dijk) are

upper triangular . We are
then using :

Fait: For any upper (or lower)
D-alar

14 ,
detcia) = product ofdiagonal

entries .

To completethe proof, note that

ACK) is obtained by row operations

(i. e. subtracting of
scaled copies of

rows) .

Se detc Dijk
' ) = def ( Dii)

det ( DM ) etc ☐
"'

)

determinants of sub matrices
of A ' ☐




