Numerical Computation
So far, several algorithms wa few basic techniques

Eigenvalues of matrices (egg. Cheeger)

$$
\begin{aligned}
& \text { SDPs (eg'max-cut) } \\
& \text { LPs (eeg sutcover) }
\end{aligned}
$$

Sires equation solving (egg. sat instances of
How do we implement these prominins?
\rightarrow Several of the times we applied these methods, the riputs, the outputs or sometimes both were real numbers.

But our computers \& our models for them are still "digital".
Every algorithm eventually should be a WORD-RAM m/c.(1) RAM memory
(2) W : word size, $\omega \sim \theta(\log n)$. Barithmetie operations on w bit integers can be done in $O(1)$ time.
What about real numbers?
Hens do we compute on real numbers?
Answer: We don't.
Less glitz answer: Must approximate" by rationals \& hope for the best.

Youmight think such details just work out. But they con be anywhere from easy to non-trivial to impossible.
In fact, it is offer assumed that basic operations on real \#s can be dave in $O(1)$ tome: What are basic operations? One might hope that these car be implemented on TMs/digital computers with poly (n) slow down. So no harm, no foul \& great convenience.

What are basic opera hons?
Addition

Multiplication
Division?
Square roots?

Some subset appears to make the model unvesosnable (SPSARACE)
rounding to integers? modulus?
Can we gist keep arithmetic ops and work to get reasonable results?
Also fraught with some issues.

SUM OF SQUARE ROOTS PROBLEM
Gen 2 polygons on plane with eriteger coordinate vertices, decide which one has a larger perimeter?

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right) \ldots\left(x_{n}, y_{n}\right) \rightarrow \text { Ploggonl } \\
& \left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right)+\text { polygon } \\
& \sum_{i} \sqrt{\left(y_{i}-y_{i-1}\right)^{2}+\left(x_{i}-x_{i-1}\right)^{2}} \\
& \quad \stackrel{?}{<} \sum_{i} \sqrt{\left(u_{i}-u_{i-1}\right)^{2}+\left(v_{i}-v_{i-1}\right)^{2}} \\
& \text { Similavissuesin }
\end{aligned}
$$

Euclidean TSP, Euclidean Shortest laths,

Cangue a PSPACE alpo for SOSR Calso known to be in ppppppl (4th level of counting hierarchy).).
Not known to be even in NP
$O(n)$ time on "real RAM".
Blömer: poly lime randomized aldo to decide if two sums are equal but cannot decide which is larger.
Moral: Got to be somewhat careful
of numerical issues. Cant always expect them to work themselves out.

Today: Solving Linear Equations
\rightarrow in pint numbers are rationals.
\rightarrow rationals described by a pair of integers.
Obs ${ }^{n}$: given $\frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}}$, can

1) add i) multiply 2$)$ divide in poly (input-size) tame.

Why ${ }^{2}$ i) $\frac{p_{1}}{q_{1}}+\frac{p_{2}}{q_{2}}=\frac{p_{1} q_{2}+p_{2} \cdot q_{1}}{q_{1} q_{2}}$
If all p_{i}, q_{i} are m-bi tong integers, then their sum is at most $2 m+2$ bit integers in num/den.
2) division: $\frac{p_{1} \varepsilon_{2}}{q_{i} p_{2}} \int{ }^{2}{ }^{2 m}$ ling
3) multeplicatan: $\frac{p_{1} \cdot p_{2}}{q_{1} \cdot q_{2}} \underset{\substack{\text { j } \\ \text { bong } \\ \text { long }}}{\text { min }}$

Let's now consider the primitives we saw :.

Lërear Equation
Solving
Given $A \in Q^{n \times n}, b \in Q^{n}$, find x st. $A x=b$ if it exists.
Is there a poly-size representable solution?
Cramer's rule: $X_{i}=\frac{\operatorname{det}\left(A_{i}\right)}{\operatorname{det}(A)}$ where A_{i} : replace $i^{\text {th }}$ col by bi
Prop: If all entries of A are integers of $\leqslant b$ bits, $\operatorname{det}(A)$ s an integer of $\leqslant n \log n+n \cdot \log b$

Proof $\operatorname{det}(A)=\sum_{\sigma:[n] n \rightarrow[n]} \prod_{\substack{i \leq n}}(i, \sigma(i)) \cdot \operatorname{sgn}(\sigma)$ perm.

$$
\begin{align*}
|\operatorname{det}(A)| & \leqslant n!\max _{\sigma}\left(\prod_{i \leq n} A(i, \sigma(i))\right. \\
& \leqslant n!2^{b \cdot n .} \tag{0.}
\end{align*}
$$

Thus, each $x_{i}=\frac{\operatorname{det}\left(A_{i}\right)}{\operatorname{det}(A)}$ can be written in $\leqslant O(n \cdot \log n+n \cdot b)$ bits $=$ poly (inputsize) bets. if A is an integer -entry matrix What if A^{\prime} s entries are not integers?

Can take "common denominator" of n^{2} entries. If allentrics are bo bit long, the common denominator oi s $\leqslant x^{2} \cdot b$ bits long.
So making A's entries integers amounts to multiplyy all entries by an integer of $\leqslant n^{2} \cdot b$ bits. \rightarrow at most poly blow up to the bit complexity. Cb-bit entries $\rightarrow \leqslant x^{2}-b$ bit rationals criteger entries)

Eigenvalues of matrix $A \in Q^{n \times n}$?

$$
A=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right): \quad \text { ir }= \pm \sqrt{2}
$$

even integer matrices can have irrational eigs.
So, must resort to appropomation
Note: can write down an Eevror approx in $O\left(\log \frac{1}{\varepsilon}\right)$ bits.
Linear programening

$$
\begin{aligned}
& \max C^{\top} x \quad C_{1} A \in Q^{m \times n} \\
& \text { st t } A x \leqslant 6 \quad \epsilon_{Q^{n}} \text { poly }(n) \text { bit } \\
& \mathbb{R}^{n} \ni 0 \leq x \leq B<\text { integer. }
\end{aligned}
$$

Fact: If $L P$ is feasible then there is an optemial solution with poly (n, m, b) bits where $b=$ bit complexity of entries of A, b
Can we always have CPs in the form above?
$" X \leq B "^{"} \rightarrow{ }^{\text {" }}$ Bounding Box" Constraint-
In our applications, B can often be 1.

We will now see an algorithm to solve linear equations over
Q in polynomial time in the size of the input.

Input: $A^{E Z^{n \times n}}=\left(a_{i j}\right)$ of integers of at most m bits.
$b \in Z^{n}:$ with $\leq m$ bit integer entries.

Goals find x st.
$A x=6$. if it exists.

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{2 n} \\
\vdots & & \\
a_{n 1} & a_{n 2} & a_{n n}
\end{array}\right) \in n \times n
$$

Obs: the following operations do not change solution set of the equations.
(1) Scaling equations.

$$
\begin{aligned}
& \sum_{i} a_{1 i} x_{i}=b_{i} \\
& \sum_{i} s \cdot a_{1 i} x_{i}=s \cdot b_{i}
\end{aligned}
$$

(2) Subtracting an equation from another
(dea :1)Subtract appropriate Scalings of the Dst equation from all others to make

$$
\text { lIst cal Ofor rows } 2 \leq i \leq n: A=A^{(0)} \rightarrow A^{(1)} \text {. }
$$

2) Subtract appropriate scaling of the $2^{\text {nd }}$ equation to make $2^{\text {nd }}$ column O for equations

$$
\begin{aligned}
& i=3, \ldots, n \\
&\left\{\begin{array}{l}
n \\
\lambda^{(n)}
\end{array}\right. A^{(1)} \rightarrow A^{(2)} .
\end{aligned}
$$

At the end, we have a Upper triangular matrix $=A^{(n)}$

easy to solve by "solve \& substitute" learn X_{n} from last equation. subshtute x_{n} in $2^{n d}$ last equation to learn X_{n-1} and so on..

Pivots: Our discussion assumed that $a_{11}=0$. And then for the matrix $A^{(1)}$ obtained after zeroing first column, that $a_{22}^{(1)}=0$ what if en $A^{(k-1)}, a_{k k}^{(k-1)}=0$?
Idea. I) If equation i for $k \leq i \leq n$ ($=$ vow i of $A^{(k-1)}$). has a non-zero entry $i n$ column k, Can "swap" to make row i = row k of $\left.A^{(k-1)}\right)$
2) What if all rows i for $k \leq i \leq n$ hare zero in k-th column?

If some column $k \leq j \leq n$ has a non-zero entry in arrow $k \leq i \leq n$ then swap $j^{\text {th }}$ column with $k^{\text {th }}$. row Swap $=r_{\text {-ordering equations }}$ col swap $=$ renaming variables.
3) What if the whole block rows $k \leq i \leq n$
cols $k \leq j \leq n$ is all zeros?
Thenar, done! We've identified the affine subspace of solutions!

What's the time complexity
Each elimination step involves n multiplications, n^{2} subtractions and additions. So $O\left(n^{2}\right)$ arithmetre operations on b-bit numbers.
There are n total elimination Steps \rightarrow So $O\left(n^{3}\right)$ arithmetic operations.
Substitute and solve takes

$$
\begin{gathered}
O(1)+O(2)+\ldots+O(n) \\
=O\left(n^{2}\right)
\end{gathered}
$$

So all incl, we take
$O\left(n^{3}\right)$ arithmetic operations.
But is that the running time? In the list step, we are doing arithmetic on b bit \#s. So takes poly (b) time for each operation.
But What about subsequent steps?
Let's write down what happens to the entries of the matrix after the k-th elimination step.

Let $a_{i j}^{(k-1)}$: entries before $k^{\text {th }}$ elimination step.
$a_{i j}{ }^{(k)}$: after $k^{\text {th }}$ eliminination
step. step.
Then, if $i \leq k, j \leq k-1, \quad a_{i j}^{(k-1)}=a_{i j}^{(k)}$
Since we only modify rows k through n in the $k^{\text {th }}$ elimination step.
If $i>k, j \leq k-1$, then

$$
a_{i j}^{(k-1)}=a_{i j}^{(k)}=0
$$

We can assume WLOG that $a_{k, k}^{(k-1)}$ is the pivot (othervise we can to Some row/col exchanges)

For $i \geqslant k+1, j \geqslant k$,

$$
a_{i j}^{(k)}=a_{i j}^{(k-1)}-a_{k, j}^{(k-1)} \cdot \frac{a_{i, k}^{(k-1)}}{a_{k, k}^{(k-1)}}
$$

Note that this ensures that

$$
a_{i, k}^{(k)}=0 \forall i \geqslant k+1
$$

(1) is same as

$$
\begin{aligned}
& a_{i j}^{(k)}=\frac{a_{i j}^{(k-1)} \cdot a_{k, k}^{(k-1)} a_{k j}^{(k-1)} a_{i k}^{(k-1)}}{a_{k, k}^{(k-1)}} \\
& k\left(\begin{array}{l}
a_{k k}^{(k-1)} a_{k j}^{(k-1)} \\
\left.a_{i k}^{(k-1)} a_{i j}^{(k-1)}\right)
\end{array} a_{i j}^{(k)}=\frac{\operatorname{Det}\left(D^{(k-1)}\right)}{\left.a_{k k}^{(k-1)}\right)}\right. \\
& D^{(k-1) \in Q^{2 \times 2}}
\end{aligned}
$$

Examining (1), observe that the $\frac{a_{k j}^{(k-1)} \cdot a_{i k}^{(k-1)}}{a_{k k}^{(k-1)}}$ involves multiplying 2 entries of $A^{(k-1)}$. So bit complexity becomes twice that of the entries of $A^{(k-1)}$.
bitcomplex 1 y. $\left(A^{(k)}\right) \leq 2$ bit comp $\left(A^{(K-1)}\right)+\ldots$
best we can expect from this recursive bound is

$$
\text { round is } \text { bit complexity }\left(A^{(n)}\right) \leqslant 2^{n} \cdot b
$$

exponentially large numbers.

Thus, the naive upper bound seems to suggest a exponential blow up in the bit complexity of the intermediate rational numbers obtained.
It turns ont that this bound is pessimistic. The key observation is the following claim of Edmond (1967)
Lemma: For every k, every entry of $A^{(k)}$ is a ratio of determinants of two sub matrices of A.
Notice that this lemma pmimediately implies that the bit complexity of all entries of $A^{(k)}$. is at most $\log \left(n!2^{b n}\right) \leq n \log _{2} n+n b$.

Proof of lemma: Very slick proof.
Key Fact: If you take any matrix A and produce A^{\prime} by operators of the from
then $\operatorname{det}\left(A^{\prime}\right)=\operatorname{det}(A)$.
Wewillprove: Let $D^{(k)}$ be the matrix $x(k x k)$ with Is k rows \& cols of $A^{(k)}$. Let $D_{i}{ }^{(k)}$ be the $k+1$ by $k+1$ matrix with list k rows $\& i^{\text {th }}$ mow of $A^{(k)} \& 1^{\text {st }} k$ cols \& $j^{\text {th }}$ cd of $A^{(k) \text {. Then }}$

$$
a_{i j}^{(K)}=\frac{\operatorname{det}\left(D_{i j}^{(K)}\right)}{\operatorname{det}\left(D^{(k)}\right)}
$$

Consider the matrix

Note: Can

γ assume i,j>>k+1. If $i \leq k$, then $a_{i j}^{(k)}=a_{i j}^{(k-1)}$ If $j \leq k$, then
$D_{i j}^{(k) \text { : first } k \text { rows } \& i^{i t h}}$
row of $A^{(k)}$ row of $A^{(k)}$ first k cols \& $j^{\text {th }}$ cal of $A^{(k)}$.
$D^{(k)}$: first k rows \& cols of $A^{(k)}$.
Then note that

$$
\begin{aligned}
& \text { Then note that } a_{11}^{(k)} \cdot a_{22}^{(k)} \cdots a_{k k}^{(k)} . \\
& \left.* \leftarrow \operatorname{det}\left(D^{(k)}\right)\right) \\
& \&_{* x} \operatorname{det}\left(D_{i j}^{(k)}\right)=a_{11}^{(k)} \cdot a_{22}^{(k)} \cdot a_{k k}^{(k)} \cdot a_{i j}^{(k)}
\end{aligned}
$$

Notice that both $D^{(k) \&} D_{i j}^{(k)}$ are upper triangular. We are then using:
Fact: For any upper (or lower) Δ-ukr $\overline{M,} \operatorname{det}(M)=$ product of diagonal entries.
To complete the proof, note that $A^{(k)}$ is obtained by row operations (ie. subtracting of scaled copies of rows).
So $\operatorname{det}\left(D_{i j}^{(k)}\right)=\operatorname{det}\left(D_{i j}^{(0)}\right)$

$$
\operatorname{det}\left(D^{(k)}\right)=\operatorname{det}\left(D^{(0)}\right)
$$

determinants of sub matrices of A.

