UNIQUE GAMES CONJECTURE
-Strengthening of $P \neq N P$ hypothesis

- posits hardness of a natural problem
- yields optimal hardness results
for Max-Cut, Vertex Cover,....
- truth not yet known
- Amazingly rich theory with interplay between

1) hardness of approx.
2) algo design va SOPs.
3) Methods from Analysis of Boolean Functions, Geometry...

The Problem α the Conjecture
Max 2-LIN CP) field.
\rightarrow \# vars in each equation
Input: equations of the form

Cool: Satisfy max frac of them
DefCValue): $\max _{\text {sat is frack of co constraints }}$ satisfiable
Random Assignment: $\frac{1}{P}$
Theorem: If value $=1$, can find
a sat assignment in poly time.
Proof: Solve linear equations via
Gaussian elimination--
CONJECTURE [Khot'O2]
$\forall \varepsilon>0, \forall p$ large enough,

$$
(1-\varepsilon, \varepsilon)-\operatorname{MAx}_{2} \operatorname{LIN}(p) \text { is }
$$

Np-hard.
"It is NP-hard to 'fend an \& sat assignment for a $1-\varepsilon$ sat instance".
Best poly tune alpo: $1-\varepsilon, 1-O\left(\sqrt{\varepsilon \log k^{2}}\right)$
Can beat brute-force search:

Arora-Rarak-Steurer' 10
$2^{n^{\varepsilon}}$ tune algo, if opt $=1-\varepsilon$, round $=1-\varepsilon^{y^{\prime}}$.
"indep of alphabet size"

Lots of interesting work an both algos \& lower bounds...
Most recently.
Thu [2018] [2-to-2 Games Thu]
$\left(\frac{1}{2}, \varepsilon\right)-U G$ is NP-Hard.

$$
\rightarrow \quad 1-\varepsilon \Rightarrow U \cdot G \cdot C
$$

Today \& next 2 classes
a glimpse of this theory
We will prove optimal hardness of Max-cut assuming the U.G.C.
We will do it in a way that shears that there's a principled theory of such optimal hardness reductions. And this tho ry directly builds hardness reductions from Integrality Gaps for SDP for a large class of problems
FAILURE OF SOP \rightarrow UG Hardness-..

Theorem [Khot Kinder Mossell O'donnell O4]
$\forall \varepsilon>0, \quad \alpha_{G \omega}+\varepsilon$ approx.
Max-cut is the U.G.C. $\underset{\rho<0}{\min } \frac{\operatorname{arc}-\cos (\rho)}{\pi\left(\frac{1}{2}-\frac{1}{2} \rho\right)}$ Like the examples we saw en last lecture, this theorem we will prove this theorem via "gadget" reduchons
"Gadget Reductions"' $R: P_{1} \rightarrow P_{2}$.
P_{2} instance $=$ "local transformation" of instance for P_{1}. modify constant size portions
E.g. Reduction for Vertex Cover that replaces each clause by 7 vertices local.
each edge of the resulting Is instance depends only on 2 clauses in the input 3SAT instance.

Our gadgets need to get the exact $\frac{1}{2}-\frac{1}{2} \rho \rightarrow \frac{\operatorname{arc}-\cos (e)}{\pi}$ gap. So need some "geometry" to shar up.
In fact, our gadgets will in a precise sense come from our Integrality Gap \& Rounding Gap Instances for Max cat.
Let me remind you of those.. Both were "embedded graphs" \rightarrow each vertex came with a vector labeling it.

Integrality Gap (Feige Schechtmon graph)
Vertices $=$ (discrctization) of unit Sphere in d-dim
edge : pick \vec{u}, \vec{v} uniformly from
distribution S^{d-1} conditioned an

$$
\begin{gathered}
\langle\vec{u}, \vec{v}\rangle \leqslant \rho_{*} \\
\frac{\operatorname{SDP} O B J: \mathbb{E}\left[\frac{1}{2}-\frac{1}{2}\langle\vec{u}, \vec{v}\rangle\right]}{\substack{\{\vec{u}, \vec{v}\} \\
\sim \text { edge }}}=\frac{1}{2}-\frac{1}{2} \rho_{*} .
\end{gathered}
$$

Analysis: (1)
hemisphere
cats are optimal for this graph
(2) hemisphere cuts have
\downarrow value $\sim \frac{\operatorname{arc}-\cos \left(\rho_{*}\right)}{\pi}$
Same analysis as our rounding.

Rounding Gap

1) Vertices: Corners of hypercube $\left\{ \pm \frac{1}{\sqrt{d}}\right\}^{d}$ scaled down to be unit vectors
2) edge : i) pick \vec{u} at vandom
dist ${ }^{n}$ 2) pick \vec{V} by flipping each coordinate of \vec{u} eindep

$$
W \cdot p \cdot \frac{1}{2}-\frac{1}{2} \rho_{*}
$$

3) Output $\{\vec{u}, \vec{v}\},\binom{\vec{E}\langle\vec{u}, \vec{v}\rangle}{=\rho_{*}}$

$$
\operatorname{SDP} O B J=\frac{1}{2}-\frac{1}{2} \rho_{*}
$$

True Max-Cut: , also $\frac{1}{2}-\frac{1}{2} \rho_{*}$

$$
\begin{aligned}
& D_{i}=\left\{\vec{u} \left\lvert\, \vec{u}_{i}=\frac{+1}{\sqrt{d}}\right.\right\} \text {. } \\
& \underset{\substack{P_{r} \\
\{\vec{u}, \vec{v}\} \text { edge }}}{ }\left[D_{i}(\vec{u}) \neq D_{i}(\vec{v})\right]=\frac{1}{2} \frac{P_{x}}{2}
\end{aligned}
$$

Our gadget for $\mathrm{Max}-\mathrm{Cu} t \rightarrow$ hypercube graph.
to analyze cuts in such graphs, useful to adopt "function vies".

Every subset of
vertices S
cut's

$$
\begin{aligned}
\leftrightarrow f: & \{ \pm 1\} \\
& \rightarrow\{ \pm 1\} \\
f(x) & =+1 \\
\rightarrow & x \in s \\
f(x) & =-1, \overrightarrow{2} \\
& x \notin s .
\end{aligned}
$$

Value of cuts

$$
=\operatorname{Pr}[f(x) \neq f(y)]
$$

$$
\{x, y\} \text { wedge dist } n
$$

Need machinery to reason about such

BASIC FOURIER ANALYSIS OF BOOLEAN FUNCTIONS

$$
f:\{-1,1\}^{n} \rightarrow \mathbb{R}
$$

\rightarrow Boolean Function.
Fourier analysis ~ write f as linear combination of
some nice functions, use et to prove properties of f
INNER PRODUCT

$$
\begin{aligned}
& \text { Let } f:\{-1,1\}^{n} \rightarrow \mathbb{R} \\
& g:\left\{-1,17^{n} \rightarrow \mathbb{R}\right. \\
&\langle f, g\rangle= \mathbb{E} \quad f(x) \cdot g(x) \\
& x \sim\left\{-1,(\}^{n}=2^{-n} \cdot \sum_{x} f(x) g(x)\right.
\end{aligned}
$$

"treat f, g as vectors of length 2^{n}, take inner products, rescale by $2^{-n^{4}}$ Note: $\frac{\mathbb{E}}{x} x_{i}=0 \cdot \not F^{i}$
Norm

$$
\|f\|_{2}^{2}=\langle f, f\rangle=\frac{\mathbb{E}}{x} f(x)^{2}
$$

Def (Parity functions/Monomials)
For any $s \in[n]$,
$X_{S}=\prod_{i \in S} X_{i}$ is the
"parity" function or monomial on S.
If odd \# bits in 5 are -1 , then -1 even \# bits in δ are -1 , then 1

Observation [Orthonormality]
$\mathbb{E}_{x} X_{S}=0$ if $S \neq \varnothing$
If $s \neq T$,

$$
\left\langle x_{S}, x_{T}\right\rangle=0
$$

If $s=\tau,\left\langle x_{S}, x_{S}\right\rangle=\left\|x_{S}\right\|_{2}^{2}$

$$
=1
$$

Proof:

$$
\begin{aligned}
x_{S} \cdot x_{T} & =\prod_{i \in S} x_{i} \cdot \prod_{i \in T} x_{T} \\
& =\prod_{i \in S \cap T} x_{i}^{2} \cdot \prod_{i \in S \Delta T} x_{i} \\
& =\prod_{i \in S \Delta T}^{1} x_{i}
\end{aligned}
$$

If $S \Delta T \neq \phi, \mathbb{E} \prod_{i \in S \Delta T} x_{i}=\prod_{i \in S \Delta T^{x}}^{\mathbb{E}} x_{i}$ $x i \in s \Delta T \quad i \in \Delta \Delta T^{x}$
observation:
The set of functions $\left\{X_{s} \mid S \subseteq[n]\right\}$ form a orthonormal basis w.r.t. the inner product above.
Proof: We proved that each X_{S} has length: $\left\|X_{S}\right\|_{2}^{2}=1$

$$
\& \forall s \neq T\left\langle x_{s}, x_{T}\right\rangle=0
$$

\& there are 2^{n} such functions \& the dim of space $\leq 2^{n}$.

Thus each f can be expanded as lin comb of X_{s}.

Defunithen (Fourier Transform)

$$
f:\{-1,1\}^{n} \rightarrow \mathbb{R} \cap \text { Fourier } \text { Coefficient }
$$

$$
\underline{F_{x}}: f(x)=\underbrace{\sum_{s \leq[n]} \hat{f}(s) \cdot x_{s}(x)}_{\text {Founder }}
$$

expansion
"writing fin the basis of "Xs".
Observation
Let $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$. Then
$\forall s, \quad \hat{f}(s)=\underset{x}{\mathbb{E}} f(x) \cdot x_{s}$
Correlation of f $\& X_{s}$.

Proof:

$$
\begin{aligned}
& f(x)=\sum_{s} \hat{f}(s) x_{s}(x) \\
& \mathbb{E} f(x) \cdot x_{T}(x) \\
& x=\mathbb{E}_{x} \sum_{s} \hat{f}(s) \cdot x_{S}\left(10 x_{T}(x)\right. \\
& \begin{array}{r}
=\sum_{S} \hat{f}(s) \cdot \begin{array}{c}
\mathbb{E} x_{S}(x) \cdot x_{T}(x) \\
0^{\prime} \\
\text { if } s \neq T \quad \text { if } s^{\prime}=T
\end{array}, ~
\end{array} \\
& =\hat{f}(T)
\end{aligned}
$$

Observation: $f:\left\{-1,(1\}^{n} \rightarrow \mathbb{R}\right.$
Then, $\underset{x}{E} f(x)^{2}=\sum_{s} \hat{f}(s)^{2}$

Proof:

$$
\begin{aligned}
& f(x)=\sum_{s} \hat{f}(s) \cdot x_{S}(x) \\
& \underset{x}{\mathbb{E}} f(x)^{2}=\frac{1}{2^{n} \cdot x} \sum_{s, T} \hat{f}(s) \hat{f}(T) . \\
& =\sum_{S, T} \hat{f}(S) \cdot \hat{f}(T) \text {. } \\
& \underset{x}{\mathbb{E}} x_{S} x_{T} \\
& =\sum_{s} \hat{f}(s)^{2} \text {. }
\end{aligned}
$$

Influence of Functions
In $f_{i}(f)$: influence of i th variable on f.
Def (for Boolean valued functions)

$$
\begin{aligned}
& f:\{-1,1\}^{n} \rightarrow\{-1,1\} . \\
& \begin{aligned}
\operatorname{Inf}:(f) & =\operatorname{Pr}_{x \sim\{ \pm 1\}^{n}}\left[f(x) \neq f\left(x^{(i)}\right]\right. \\
& =\underset{x u\left\{ \pm 13^{n}\right.}{\mathbb{E}} \frac{1}{4}\left(f(x)-f\left(x^{(i)}\right)\right)^{2+n b i i t ~}
\end{aligned}
\end{aligned}
$$

"prot that ait a random x, flipping th bit changes the value of $f^{\prime \prime}$

Lemma
Let $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$. Then,

$$
\begin{aligned}
\frac{1}{4} \frac{\mathbb{F}}{x}(f(x) & \left.-f\left(x^{(i)}\right)\right)^{2} \\
& =\sum_{s \ni i} \hat{f}(s)^{2}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& f: \\
& \begin{aligned}
f(x)= & \sum_{s} \hat{f}(s) \cdot x_{s} \\
f\left(x^{(i)}\right) & =\sum_{s} \hat{f}(s) x_{s}^{(i)} \\
& =\sum_{s \neq i} \hat{f}(s) \cdot x_{s}-\sum_{s \ni i} \hat{f}(s) \cdot x_{s}
\end{aligned}
\end{aligned}
$$

Thus, $f(x)-f\left(x^{(i)}\right)=2 \sum_{s \ni i} \hat{f}(s) \cdot x_{s}$. or $\frac{1}{2}\left(f(x)-f\left(x^{(1)}\right)\right)=\sum_{s \ni i} \hat{f}(s) \cdot x_{s}$ $g^{\prime \prime}(x)$

Parseval: $\quad E_{x} g(x)^{2}=\sum_{s>i} \hat{f}(s)^{2}$

$$
\frac{1}{4} \frac{\mathbb{E}}{x}\left(f(x)-f\left(x^{(i)}\right)\right)^{2}
$$

Examples:

1) Dictator Function
$f(x)=x_{j} \rightarrow$ depends only on $j^{\text {th }}$ bit.
$\operatorname{Inf}(f)=1!$ Very influential
2) $f(x)=\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \quad a_{\text {mean function" }}$
$\frac{1}{4} \underset{x}{\mathbb{E}}\left(f(x)-f\left(x^{(i)}\right)^{2}=\frac{1}{n^{2}} \cdot "\right.$ low influence function"
3)

$$
\begin{aligned}
f(x) & =\operatorname{MAJ}(x), n: \operatorname{odd} \\
& =\operatorname{sign}\left(\Sigma_{i} x_{i}\right)
\end{aligned}
$$

when does puppy a bit change the value of MAJ?
Ans: when $\sum_{i} x_{i}=1$

$$
\text { or } \varepsilon_{i} x_{i}=-1 \text {. }
$$

At such an x, any bit flopped will

$$
\begin{aligned}
& \text { charge the value } \\
& \text { Prob }\left[\varepsilon_{i} x_{i}=1 \text { or }-1\right]
\end{aligned}=\left(\begin{array}{c}
\binom{n}{\frac{n-1}{2}} \\
2^{n}
\end{array}+\binom{n}{\frac{n+1}{n}}\right.
$$

4) PARITY FUNCTION

$$
f(x)=\prod_{i=1}^{n} x_{i}
$$

flipping any bit at any x changes the output of PARCTY FONCTCON. every bit has influence 1 .

$$
\operatorname{Inf} i(f)=1 \quad \forall i
$$

LOW DEGREE INFLUENCE
Def

$$
\operatorname{Inf}_{i}(f)=\sum_{\substack{s \ni j \\|s| \leq c}} \hat{f}(s)^{2}
$$

"discounting the effect of higher degree party functions."
$\mathrm{Obs}{ }^{n}$:
only C C bits can be influential now.

$$
\operatorname{Inf}_{i}^{c}\left(x_{S}\right)=0_{1}^{\text {influential now. }} \text { if otherwise }
$$

So, if $|S|$ is large, the lou degree influence is small.

Lemma (Only a small \# vars can be enf(nential)

$$
\text { Let } f:\{-1,1\}^{n} \rightarrow[-1,1] \text {. }
$$

Then, for any $c>0$

$$
\begin{aligned}
& \left|\left\{i \mid \operatorname{Inf}_{i}^{c}(f) \geq \varepsilon\right\}\right| \\
& \leqslant \frac{c}{\varepsilon}
\end{aligned}
$$

$P_{\text {roof }}$

$$
\begin{aligned}
& \sum_{i=1}^{n} \operatorname{In} f_{i}^{c} \cdot(f) \\
& =\sum_{i=1}^{n} \sum_{s \ni i, 1 s \mid s c} \hat{f}(s)^{2} \\
& \leq C \sum_{s} \hat{f}(s)^{2} \cdot \leq c \\
& \qquad \begin{array}{l}
\text { since } \\
\sum_{s} \hat{f}(s)^{2}=\mathbb{T} f(x)^{2} \\
x \leq 1
\end{array}
\end{aligned}
$$

So, by Markov's iniequality,
frac of $i: \operatorname{Inf}_{i}^{c}(f) \geqslant \varepsilon$

$$
\leqslant \frac{c}{\varepsilon}
$$

