Advanced Approximation Algorithms CMU 15-854B, Fall 2021

HOMEWORK 4
Due: Friday Dec 3, 11:59pm EST on Gradescope

Exercises (Please Solve but Do Not Submit)

1. A Covering Problem. Given a set of n items, each having a size s; > 0 and a cost ¢; > 0,
you want to pick a min-cost subset of them so that the total size is at least 1. (You will see this in
Problem #1 below as well.) Show that the greedy algorithm, which picks items in increasing order
of ¢;/s; does not give a constant factor approximation.

Suppose you guess the cost C' of the most expensive item in the optimal solution, throw away
all items more expensive than C', and now run the greedy algorithm. Show that your cost is now
at most 2C', and hence you have a 2-approximation.

2. Another Covering Problem. Given a set system (U, F) with n elements and m sets, now
you are given a coverage requirement r. for each e € U, and a cost cg for each S € F. You
want to pick the collection F' C F of smallest total cost such that each element e belongs to 7,
different sets. (Each set can be picked at most once into F'.) Write an LP for this problem. Show
a randomized rounding algorithm that achieves an O(logn)-approximation.

Problems

Please solve any four out of the five problems.

1. Round or Separate! Given a set of n items, each having a size s; > 0 and a cost ¢; > 0, you
want to pick a subset of them of minimum total cost, so that the total size is at least 1.

(a) (Do not submit.) You write the natural LP relaxation for this problem:
min{z T | Zsixi >1,z; € [0,1]}.
i i

Show this LP has a large integrality gap: i.e., give an instance (with a single item) where the
LP value is much smaller than the cost of the optimal integer solution. (Hint: what if s; > 17)

(b) Now suppose you truncate the size of each item as follows: s; - min(s;, 1). Show that the LP
relaxation above still has an unbounded integrality gap. (Hint: now your example instance can
have two items, both of size at most 1.)

(c) To fix this problem, you write a stronger LP relaxation. For a set A C [n] of items, let
S(A) := 3 c 4 8i- Define the requirement with respect to A to be D(A) = max(1 — S(A4),0),
and the marginal size of item ¢ with respect to A to be s;(A) := min(s;, D(A)). Argue that the
constraints

) si(A)x; > D(A) VA C [n]



are valid constraints—mamely that any (integer) solution to the original covering problem
satisfies these constraints.

(d) Show that, for the two-item example you constructed above, this LP has cost at least half of
the optimal integer solution.

(e) Sowe add in all these constraints to our LP. Since there are exponentially many such constraints,
and separating for them is not easy, here’s a way out. Given any fractional solution = € [0,1]"
for this larger LP, we focus on one constraint (that depends on x). If it is not satisfied, we have
found a violated constraint (and use this as a separation oracle for Ellipsoid). OTOH, if this
constraint is satisfied, we show how to get an integer solution from this constraint itself!

Given z, define A := {i € [n] [ z; > 1/2}. Consider the constraint },, 4 si(4)z; > D(A).
Suppose this constraint is satisfied (fractionally). Define X; = 1 for all i € A. For each item 14
in [n] \ A independently let X; = 1 with probability 2z;.

Show that this solution X is a feasible integer solution with constant probability.

2. Pack Up Your Items in Your Old Kit Bag. Recall the maz-value knapsack problem we
saw in class. We are given items with size s; > 0 and value v; > 0. We want to pick items whose
total size is at most S, and to mazimize the sum of values of items in this set. (This is a packing
problem, unlike the covering problem above.)

(a) Suppose all the values are integers. Give a dynamic-programming algorithm with running time
O(nV*), where V* is the value of the optimal solution. So, this would be a better algorithm if
the sizes are much larger than the values.

Note: your algorithm should work even if V* is not known in advance. You may want to
first assume you are given V* up front and then afterwards figure out how to remove that
requirement.

(b) Now given an instance I of knapsack and some real k& > 1, define new values v} := k - L%J,
but retain the old sizes. This gives a new instance I’. Since item sizes and S remain the same,
clearly the feasible solutions to I and I’ are the same, albeit with different values.

For any feasible solution, let its value in I be V', and its value in I’ be V’. Show that V >V’ >
V —nk.

(c) Use part (a) to show that I’ can be solved in at most O(”QU%) time.

(d) Given any knapsack instance I and a value € € (0,1), show that setting k := £%mex gives an
algorithm that returns a feasible solution to I, has value least (1 — ) times the optimal value
of I, and runs in time O(”;)

In other words, if you wanted to find a solution whose value is within 99% of the optimum value,
use this algorithm with € = 0.01.

3. Constructive Caratheodory. for a graph G = (V, E) with E = {ey,...,en, let the charac-
teristic vector xr for a spanning tree 7' denote an m-bit vector where the i*? bit of y7 is 1 exactly
when e; € T'. The spanning tree polytope K is the convex hull of {x7 | T" is a spanning tree of G}.
Given a point z € K as input, our goal is to find scalars {Ar} such that @ = >, Arx7, where
)\T > 0 and ZT)‘T = 1.



(a) Write this problem as a linear program P with variables Ay. How many variables does this
have? How many constraints, apart from the non-negativity constraints? Use this to infer that
x can be written as a convex combination of at most m spanning trees. (This statement is
pretty much Carathéodory’s Theorem.)

(b) Write down the linear programming dual D of your LP. How many constraints does it have?
Show that you can solve this LP optimally in polynomial time using the Ellipsoid method.

(¢) Consider the program D’ obtained by just taking the subset of polynomially many constraints
returned by the separation oracle for the Ellipsoid algorithm. Argue that the optimal objective
function value of D’ must be the same as that of D.

(d) Consider the dual P" of D’. Observe that any solution to P’ also gives a solution to P. Show
that solving P’ explicitly gives a way to write x as a polynomially-sized convex combination of
spanning trees.

All that the above argument uses about the spanning tree polytope is that we can solve the min-cost
spanning tree problem in polynomial time. This can be extended to give constructive Carathéodory
theorems for other integer polytopes for which we can efficiently find optimal vertex solutions.
4. Sum-of-Squares for Set Cover In this problem, you will design a m®) time algorithm
that takes input m sets Si,Ss,...,S, C [n] with non-negative costs c¢i,co,..., ¢ as input and
finds a set cover of cost ((1 —¢)Inn + O(1))OPT where OPT is minimum possible cost of any set
cover.

You are allowed to use the following fact that we proved in the lectures without proof: Let
0 < x1,29,...,2, < 1satisfy Y g.cqx; > 1. Then, the greedy algorithm for rounding such z
produces a solution of cost at most H (k) Z;”:l cjr; where k is the maximum size of any S; such
that z; > 0 and H(k) < In(k) + 1.

We will analyze the following algorithm. Assume first that the number OPT is known to us.
For t = 2n® 4+ 2, find a pseudo-distribution 5 on {0,1}" that satisfies the constraints:

K={) x>1Vj€en];> ez <OPT}
i:j€S; i=1

In the following parts, you will come up with a rounding algorithm that takes input the first ¢
pseudo-moments of ¢ and outputs a set cover.

(a) (2 points) For any ¢ such that Eg[mz] > 0, define a new pseudo-distribution ¢’ as follows: for
Eé[xgx?]
Eg[2?] -

any monomial zg of size <t — 2, let Ef’ [xg] =

Prove that 5’ is a pseudo-distribution of degree > ¢ — 2 that satisfies the constraints in K and
that E, [z;] = 1. We will say that ¢’ is the conditioning of ¢ on x; = 1.

(b) (~2 poin‘gs) Rounding:  Our rounding repeatedly modifies the pseudo-distribution . Set
() =¢ Forj=0,1,2,...,(t—2)/2, find set S; that covers maximum possible number of
elements in [n] \ (S1 U---U Sj—1) such that Ez;[z;] > 0 and set ¢U*1D to be the conditioning

of () on x; = 1. If no such §; exists, stop and output all sets S}, such that IEE(G) [zx] > 0.

Using part (1) above, prove that 5 ((t=2)/2)) ig a pseudo-distribution of degree 2 satisfying all
the constraints in K and Eg(z j2—2)[xj] =1 for every set S; chosen in the iterations above.
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(c) (3 points) Let U = [n]\ (S1US2U...Sy_2y/2) be the set of all uncovered elements and let
S1NUSeNU,...,S, NU be the residual set system. Prove that for every S, such that
INE@_z[xT] >0, |S, NU| < nl~¢. (Hint: prove that if not, then every set chosen in the iterative
conditioning step above covers > n° new elements. How many such steps can there be?)

(d) (2 points) Consider the rounding algorithm that selects all the < /2 sets obtained in the
iterative rounding step and rounds the residual set system by the greedy algorithm. Prove that
this algorithm constructs a set cover of cost < ((1 —¢)Inn+ O(1))OPT.

(e) (1 points) Describe how to modify the algorithm above if OPT is not known and all costs
1,C2,...,Cny are integers in [0, 2"].

5. Sum-of-Squares and Squared Triangle Inequality Recall the squared triangle inequality
that we used in the analysis of the ARV algorithm for computing the (uniform) sparsest cuts in
graphs. In this problem, you will show that every degree 4 pseudo-distribution over the hypercube
satisfies the squared triangle inequality. As a consequence, you will “break” the integrality gap of
the cycle graph for Max-Cut.

(a) (5 points) Prove that if  is a pseudo-distribution on {—1,1}" of degree at least 6, then, for
any 1, j, k, Eé[(xz — ;)% < Eé[(xz —x)?] + Eg[(xk — z;)%]. (Hint: Consider the polynomial
(z; — 2)? + (z — x;)® — (z; — x;)?. Observe that this polynomial is non-negative over =1
variables. Use the local distribution property of pseudo-distributions proved in the class.)

(b) (Bonus) Show that the conclusion of part (1) holds even if ¢ is a pseudo-distribution of degree
4 on {-1,1}".

(¢) (5 points) For any odd n, consider the graph C,, — the n-cycle on n vertices. Let f(z) =
ﬁ > (i.j1eCn (z; — 27)? be the polynomial that computes the normalized cut size in C,,. Prove

that for any pseudo-distribution ¢ of degree 6 (4, if you proved the bonus), it holds that

Eelf(@)] <1 1. Conclude that the relaxation: max E¢[f ()] over all pseudo-distributions ¢

on {—1,1}" of degree > 6 has no integrality gap on C,.



