Advanced Approximation Algorithms CMU 15-854B, Fall 2021

HOMEWORK 3
Due: Monday, Oct 25, 11:59pm EST on Gradescope

Exercises (Please Solve but Do Not Submit)

1. Steiner Tree. Given any Steiner tree instance (see Problem 4 below for definitions), here
is a 2-approximation. Form the “metric completion” on the terminals: this is a complete graph
M = (R, (g)) whose vertices are R, and the length of an edge (7,j) is the shortest path distance
between ¢ and j in the original graph G. Compute a min-cost spanning tree (MST) T on M.
Finally, for each edge (7, ) of this MST T, add to T” all the edges on some shortest-i-j-path in G.
Show that 7" is a 2-approximate Steiner tree.

2. Multiway Cut. The MurLTiwAy CUT takes a graph G = (V, E) with a subset of terminals
S = {s1,s92,...,5t} C V. The goal is to delete the fewest edges so that no connected component
contains two different terminal nodes. Here is an algorithm: for each ¢ € [1...k — 1], find the
min-cut separating terminal s; from the set S\ {s;}. (This can be solved using an s-t-min-cut
algorithm.) Now take the union of these k — 1 cuts. Show this is a 2-approximation.

3. Randomization and Derandomization. Consider a 3-SAT formula ¢ with m clauses and
n variables. (We assume that each clause has exactly three literals.)

(i) (Easy) Show that a uniformly random assignment satisfies 7/8 of the clauses in expectation.

(i) How would you find such a solution deterministically? Here’s one approach, called the method
of conditional expectations. A partial assignment 7 is a setting of some of the n variables to
values in {7, F'}. For a formula ¢ and a partial assignment 7, let f(p, ) be the expected
number of clauses satisfied by setting the remaining variables (those not set by 7) indepen-
dently and uniformly at random. Show that we can calculate f(y,7) in linear time. (Hint:
do not use sampling, even if that gives a correct but slightly slower algorithm.)

(iii) Given any partial assignment 7 and a variable z; not set by m, show that

maX{f((p,TrU {xl — T})7f<9077TU {xl A F})} > f((P,W)-

(iv) Give a greedy algorithm to find a solution of value f(p, ). Observe this value is gm.

Problems

Please solve any four out of the first five problems. (The last bonus problem is optional.)



1. Local Search for Multiway Cut. The MuLTIWAY CUT takes a graph G = (V, E) with a
subset of terminals S = {s1,s2,...,s:} C V. The goal is to color each node in V' with one of k
colors such that the terminal s; is colored with color 7, so as to minimize the number of bichromatic
edges. (This is the same as saying: delete the fewest edges so that no connected component contains
two different terminals, as in the exercise. Make sure you believe this!)

Consider a slight extension of the problem: here each vertex v € V has an associated coloring
cost function C,, : [k] — R>¢ such that the cost of coloring v with color i is Cy(i). Now we want
find a coloring f : V' — [k] so as to minimize the total cost

O(f) = Z Cy(f(v)) + number of bichromatic edges in f . (1)
veV

Note that if we set Cs, (i) to be 0 if i = j and co otherwise, and for each non-terminal node v, we
set C,(i) = 0 for all colors 4, then we get back the MuLTIWAY CUT problem. In the general case,
we now allow k > n.

(i) Our local search algorithm will make moves of the following form: if we are at coloring f,
pick a color 7 and try to find the best coloring f’ obtained from f by recoloring some of the
vertices by the color i. Le., f’ satisfies the property that either f'(v) =i or f'(v) = f(v), and
it is the one with the least cost. Call a best such coloring an i-move. (In case of ties, choose
one arbitrarily.) We find such an i-move later.

Show that if f is a local optimum with respect to these moves, (i.e., none of the k potential
i-moves decreases the cost), then ®(f) < 2®(OPT). As usual, OPT is the optimal coloring.

(ii) Since it may take a long time to reach a local minimum, change the algorithm to make a move
from f to f’ as long as the cost decreases by at least ®(f) x (¢/k). Show that if we start from
a coloring fy, then the algorithm takes at most

log (gs7y) k o( fo)
O(—loga = s/k>> ~0(2) s (s0pm) @)

local improvement steps to reach a solution of cost 2(1 + &)®(OPT).

(iii) Note that the number of steps in the above solution is not strongly polynomial: if the coloring
costs C,(-) are very large, the number of rounds may be very large (albeit polynomial in the
representation of the instance). One way to fix this is to choose the start state fy carefully.
Can you show a choice of fy so that is at most poly(n,1/e)? (Showing such an answer
under the assumption £ < n will get you most of the points; for full points, your solution
should work even when k > n.)

(iv) Suppose you now wanted to make smaller local-search moves of the form: pick a vertex v and
a color i, and paint v with color 7 if the resulting ®(f) decreases. (These moves are called the
Glauber dynamics.) True or false: all local minima of this new process are also 2-approximate.
Give a proof or a counterexample.

(v) Finally, given a current coloring f and a target color ¢, show how to find the best i-move in
polynomial time? (Hint: use an s-t min-cut computation in a suitably defined graph.)



2. Amplifying Hardness by Graph Products. In class, we showed a reduction from (1, %—i—e)—
3-SAT to the Maximum Independent Set problem. In this problem, we will show how to upgrade
the reduction to obtain an arbitrarily large constant factor hardness for the problem.

Let H be a graph on [n]. Define the k-fold product of H as the graph H ®k whose vertices are
k-tuples of vertices of H and there is an edge between (ui,us, ..., ux) and (vq,ve,...,v) iff there
exists an i such that {u;,v;} is an edge in H.

(i) (5 points) Prove that if the largest independent set in H is of size an then the largest inde-
kK

pendent set in H®* is of size afn”.

(ii) (5 points) Prove that for any constant C' > 1, there is a polynomial-time reduction from
(1,% + €)-3-SAT to the problem of approximating the maximum independent set within a
factor < C.

3. LP Rounding. In the k-CENTER problem, the instance is just like FACILITY LOCATION and
k-MEDIAN, but the goal is now to find F' C V of size k to minimize

B(F) = i+ maxd(F)
ieF
€ —_———

. connection radius
opening cost

We will develop an LP-rounding algorithm for it. For a point j € V, define the unit ball B(j) :=
{// eV 1d(,j) <1}

i To begin, suppose we know that the connection radius max; d(j, F*) of the optimal solution ™
is at-mest exactly one. Consider the following LP:

min 1+ Z fivi
Z yi > 1 vjecl
i€B(j)

Z%Sk‘
i
y > 0.

Show how to find in polynomial time a solution F© C V of size |F| < k, with opening cost
Y ierfi = > ,vifi, such that d(j,F) < 3 for each j € C. Infer that this solution F' has
objective function value ®(F) < 3®(F*), where F* is the optimal solution.

ii For the previous part, we assumed the optimal connection radius equaled 1. Now give a poly-
time algorithm that again has ®(F') < 3®(F™) without knowing the optimal connection radius
up-front. (Hint: use the algorithm you devised above as a black box.)

4. Hardness for Steiner Tree. We now show that the Steiner tree problem is NP-hard to
approximate to some constant. In this problem, we are given an graph G = (V, E) with non-
negative edge-weights w,, along with a set of terminals R C V. The vertices in V' \ R are called
Steiner nodes. The STEINER TREE problem asks us to find a (connected) tree T = (U, E’) with
R CU CV and E' C E with least weight that contains all terminals.



We use the fact that there are families of instances for Set Cover where (a) all sets have 4
elements, and (b) it is NP-hard to distinguish between instances where there exist covers with n/4
sets (YES instances), and instances where any cover uses at least « - n/4 sets, for some constant
a > 1 (NO instances).

Construct a bipartite Steiner tree instance G = (R U {u}, S, E), where nodes in R correspond
to elements of the set system, nodes in S correspond to sets, and there is an edge between e € R
and f € S if the set f contains the element e. Moreover, add one more “root” node u connected
to all nodes in S. The terminals are R U {u}, and the Steiner nodes are S. All edges have length
1. Show that any Steiner tree instance arising from YES instances has a solution of cost n + n/4.
Show that all solutions arising from NO instances have cost at least n 4+ an/4. Hence, infer that it
is NP-hard to approximate Steiner tree better than a factor of (4 4+ «)/5.

5. SDPs for Constraint Satisfaction. In this problem, we study SDP relaxations for prob-
lems generalizing Max-Cut and Max-3-SAT, called constraint satisfaction problems. A Boolean
constraint satisfaction problem consists of:

e A predicate (a.k.a. Boolean function) P : {—1,1}¥ — {0,1} acting on k variables.
e n Boolean variables x1,x2, ..., z, taking value in {—1,1}.

e m clauses C1,Cy,...,C,, which are k-tuples of variables (these are sometimes called “con-
straints”, but we’ll call them “clauses” here to disambiguate from the SDP constraints).

e m negation patterns Ly, Lo, ..., Ly € {—1, 1}’7“7 one associated with each Cj.

For any Cj, L;, we write L;-z¢, = (Li(1)zc, 1y, Li(2)Tcy2)s - - - » Li(k)T ey 1) for the k-tuple of literals
associated with Cj, L;. Given such data, the goal is to find an assignment from {—1,1} to z;’s so
that the fraction of literals where P(L; - z¢,) = 1 is maximized. Le., we want to maximize

1 m
a:e?ialt?(l}" m ; PLi-wc,).

Here is an example: Consider the 3-SAT problem. Here, P : {—1,1}3 — {0, 1} is the Boolean
function that takes the value 0 if and only if all three of its inputs are 1 (and 1 otherwise). Recall:
in the £1 world, —1 is true and 1 is false. Each C; is a triple of the form (u,v,w) and each L;
of the form (by, by, by) and describes the clause (byxy V byxy V byxy). Notice that “negating” in
the £1-world corresponds to multiplying a variable by —1. As another example, consider the max-
cut problem. Convince yourself that the associated P : {—1,1}2 — {0,1} is the “not-equal-to”
predicate satisfied if and only if the two input bits are unequal. What should the clauses and
negations be?

Let P(z) =3 scy P(S)Xg(z) be the Fourier polynomial representation of P. Then,

P(Li-zc) = Y | P(S)- ] Lith) | Xs(@) & Y Pr(8)Xs(a).

SCIk) jes SCIK]

Our SDP relaxation will have variables yg, one for every non-empty set .S such that S C C; for
some i < m. Our objective function can then be written as:

m

S Y Pusis
=1

SCIk],S#2

We will define two sets of constraints, based on the clauses and variables respectively.



1. For each Cj, let M¢, be the 2F % 2F matrix whose rows and columns are indexed by all possible
2F subsets of C;. The (S, T)-th entry is given by Mc,(S,T) = ysar and M, (S,5) = 1.

2. Let My be the (n + 1) x (n + 1) matrix where the first n rows and columns are indexed by
elements of [n] and the last row and column indexed by @. For any ¢, j indexing first n rows
and columns, Ms(4,7) = yy; ;3 and Ma(4,i) = 1 for all i. Next, M2(@, @) = 1 and finally, for
any i, Ma(9,i) = Ma(i, @) = y-

We can now define our constraint system:

Mg, =0 forall<i<m (Local PSDness)
My >0 (Global PSDness)

In the following, we will see how this SDP relaxation generalizes the one we studied for Max-Cut
to all constraint satisfaction problems and analyze (a special case of) Gaussian rounding.

(i) (1 points) Let P be the function on 2 bits defined by P(z1,x2) = 1 if and only if 1 # x2. Prove
that the SDP relaxation above for Max-P is equivalent to the SDP relaxation for Max-Cut
we studied in class.

(ii) (2 points) Write down the relaxation explicitly for P defined by P(x1,z2,x3) = 1 iff 1 VaaVas
— the 3-SAT predicate — and verify that it is a valid relaxation. That is, prove that if there
is an assignment x that satisfies A-fraction of the clauses of the input (exact) 3-SAT formula
then the SDP optimal value is at least A. Here, “exact” refers to all clauses being exactly on
3 literals (as opposed to < 3.)

(iii) (2 points) Let us now generalize our reasoning to all P. To do this, we will prove that the “local
PSDness constraints” for any C; are equivalent to the existence of a probability distribution
D on {—1,1}% (i.e. bit assignments to variables in C;) such that EpXg(x) = yg for every
S C.
Suppose that there is a distribution D on {—1,1}% such that EpXg(x) = ys. Prove that for
any vector v € RQk, v Mo,v = ED(ZSUSXS)Q. Conclude that M¢, > 0.

(iv) Next, let’s prove the converse. If there is such a distribution for ygs, then, by linearity, for

every f: {—1,1}% — R described by f = g, f(S)Xs(@), Epf = Y gcc, F(S)EpXs(w).
Let p. be the probability of z € {—1,1}% under D.

Let f, : {—1,1}¥ — {0,1} be the function f,(x) that takes the value 1 when z = z and 0
otherwise. Set p, = Epf,.

(v) (2 point) Prove that Zze{—l,l}k p, = 1.

(vi) (2 points) Using that f2 = f,, write f2(z) = dsT f(S)fo(T) X s(x) Xp(x). Prove that
Epf? = v}—MCivf where vy is the vector of 2% dimension indexed by subsets S C C; and

vy(S) = fz(S) for every S. Conclude that p, = Epf, = Epf? > 0 for every z. Combined
with the above part, conclude that p.s form a probability distribution on {—1,1}%" as desired
in part (2).

(vii) (2 points) Finally, let’s analyze the Gaussian rounding algorithm we studied in the class for
the Max-P problem. Suppose that for a input instance described by (Cj, L;)’s, there is an
SDP solution such that My = I,,41 (we call this “pairwise uniformity” of the SDP solution).
Prove that Gaussian rounding (i.e. taking Cholesky factorization My = VV T and setting z;s
to be sign((Vi,g))) is equivalent to outputting a random assignment.



(viii) (0 points) How good is the Gaussian rounding on pairwise uniform SDP solutions? That
depends on what the SDP objective value is. For Max-Cut, if the SDP solution happens to
be pairwise uniform, verify that the SDP objective value must be % Thus, for Max-Cut, the
approximation ratio of the algorithm in the special case when the SDP solution is pairwise
uniform is 1.

6. (Bonus) SDP Integrality Gaps from Pairwise Uniformity. Unlike Max-Cut (and more
generally, 2-bit predicates P), for an appropriate class of 3-bit predicates P, one can construct SDP
solutions that are 1) pairwise uniform and 2) the SDP objective value is 1. In this problem, we
will prove something even stronger — that there are instances of 3-SAT that admit 1) a pairwise
uniform SDP solution such that 2) the SDP objective value is 1 but 3) no assignment satisfies more
than a 7/8-fraction of the constraints. This immediately shows that Gaussian rounding studied in
previous problem for 3-SAT can not have a better approximation ratio than returning a random
assignment and that moreover, the SDP above has an integrality gap of 7/8 for Max-3-SAT! One
can use this gap instance to construct a dictator test and obtain a UGC based (and with more
work, remove the dependence on the truth of the UGC) hardness of approximation for 3-SAT.

We use the setup from the previous problem here. Moreover, the clauses C1,Co, ..., C,, of an
instance of Max-P are called essentially disjoint if for every i # j, |C; N C;j| < 1. That is, the
“clauses” intersect in at most 1 variable. A predicate P is called pairwise uniform if there is a
probability distribution Dp on {—1, 1}* such that for every x in the support of Dp, P(x) = 1 while
Ez~pz; =0 and E;px;x; = 0 for every 4,7 < k.

Consider any instance of the Max-P problem where 1) the clauses are essentially disjoint and
2) P is pairwise uniform. We show how to construct a pairwise uniform SDP solution for it with
SDP objective value 1 (regardless of the negation patterns L;s).

(i) Consider the following SDP solution: Set y; = 0, y;; = 0 for every 1 < i,j < n and for
every S C Cj, set ys = Ezupor, HiES xz;: here x ~ D o L; means draw = ~ D and output
(o) Li(1), 20y 2)Li(2); - - - oy Li(k)). Prove that the ys above form 1) a feasible solution
to the SDP and 2) the objective value of the solution is 1. (Hint: Prove that for any Cj,
>_scc; Pr.(S)ys = Epor, P(xc,yL1,- -, e, (k) Li(k)) and observe that the RHS is 1).

(ii) Show that for any fixed positive integer B > 0, for n large enough, there is a collection
of m = Bn triples C1,Cs,...,Cp, on n variables such that |C; N Cj| < 1 for every i # j.
(Hint: Choose C;s uniformly at random iteratively and throw away any C; that intersects any
previous constraint in > 2 positions. Argue by union bound that the chance that you throw
away a pair is small if the number of steps in the iteration is < m = Bn.)

(iii) For any 6 > 0, let C1,Cy,...,Cy, for m = Bsn where Bs is a constant depending only on
0 be a collection of triples of n variables. For each C;, choose a uniformly random negation
pattern. Prove that no assignment satisfies more than 7/8 + § fraction of constraints the
resulting 3-SAT instance (it is okay to prove this for a larger constant than 1000). (Hint: fiz
an assignment x. Over the randomness of the negation patterns, what is the probability that x
satisfies > T/8+n fraction of the clauses? Now do a union bound. If you haven’t encountered
it yet, you may want to look up Chernoff bounds.)

(iv) Prove that there is a probability distribution D on {—1,1}3 such that 1) for every point  in
the support of D, at least one of the z;s is 1 and 2) Epxz; = 0 for every ¢ < 3 and Epz;z; =0
for every 4,5 < 3.



(v) Infer from the the parts above that if we take an essentially disjoint collection of C;s with
> Bsn clauses, randomly choose the negation patterns independently for each C; then for the
resulting (random) 3-SAT formula 1) no assignment satisfies more than > 7/8 + § fraction of
constraints with probability at least 0.99 while 2) regardless of the negation patterns, there
is an SDP solution (to the SDP above) with objective value 1.

(vi) Let P be the “#” predicate. Is P pairwise uniform?



