
Advanced Approximation Algorithms CMU 15-854B, Fall 2021

Homework 2
Due: Wednesday, Oct 6, 11:59pm EST on Gradescope

Exercises (Please Solve but Do Not Submit)

1. Bourgain’s Embedding. Some questions about Bourgain’s embeddings.

(a) Prove that for any p, the same random-subsets embedding given in Lecture 7 gives an O(log n)-
distortion embedding into `p, with high probability. (Hint: Use Hölder’s inequality, that for
any two vectors a, b, and any p, q ≥ 1 with 1

p + 1
q = 1, we have 〈a, b〉 ≤ ‖a‖p‖b‖q.)

(b) Given a metric (V, d), and a subset T ⊆ V , alter Bourgain’s construction to construct a
map ϕ : V → R

O(logn log |T |) such that (a) ‖ϕ(i) − ϕ(j)‖ ≤ d(i, j) for all i, j ∈ V , but (b)

‖ϕ(i) − ϕ(j)‖ ≥ d(i,j)
α for all i, j ∈ T , such that α = O(log |T |), with high probability. Show

that it implies an O(log |T |)-approximation to Generalized Sparsest Cut.

2. Dimension of a Set System. Given a set system (U,S), say a set A ⊆ U can be shattered
if for each subset A′ of A, there is some set S ∈ S such that A′ = S ∩A. In other words,

|{S ∩A | S ∈ S}| = 2|A|.

The Vapnik-Chervonenkis (VC) dimension of (U,S) is the largest size of a set A ⊆ U that can be
shattered by S.

(a) Let U = R
2 and S contain all half-spaces. Show that no set of size 4 can be shattered by

S. Hence infer that the VC dimension of this set system is 3. (In fact, the VC dimension of
half-spaces in Rd can be shown to be d+ 1.)

(b) What is the VC dimension of the set of intervals in R?

Suppose there is a probability distribution µ over U , such that µ(S) is well-defined for every
S ∈ S (i.e., these sets are “measurable”). A set N ⊆ U is called an ε-net for the set system if for
every set S ∈ S with µ(S) ≥ ε (i.e., the set is “large”), we have S ∩N 6= ∅.

(c) Show that a random sample of U of O(1
ε log |S|) points from the distribution µ is an ε-net with

constant probability.

Such a result is not interesting when S is large. A surprising theorem of Haussler says that
for any set system of VC dimension d, there exists an ε-net of size O(dε log 1

ε )—in fact, that a
random sample of U of this size is an ε-net with constant probability. (The proof is somewhat
tricky, and we will discuss it some other time.)

(d) Sometimes one gets better ε-nets than the above construction. Show there exists ε-net for
intervals on the line of size O(1/ε).
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3. Max-Flow/Min-Cut using Duality and LP Rounding. Given a directed graph G =
(V,E) with vertices s, t and edge capacities ce. Consider the following pair of LPs, where the
primal variables fP are flows on s-t paths P , and the dual variables are lengths ye on edges e ∈ E.

(P ) : max
∑

P fp (D) : min
∑

e ceye∑
P :e∈P fP ≤ ce

∑
e∈P ye ≥ 1

fP ≥ 0. y ≥ 0.

(The primal has exponentially many variables, the dual many constraints, but let’s not worry about
that.) These are dual LPs, and hence by strong LP duality they have equal values (assuming both
are feasible. The primal is a formulation of max-flow. The dual seems like a relaxation of the
min-s-t-cut problem: while setting ye = 1 on the edges of any s-t cut is an integer solution, we also
allow fractional solutions. However, let’s show this LP has no integrality gap, so there always exist
integer optimal solutions.

(i) For each vertex v, let dv be the shortest-path distance from s to v, according to edge lengths
ye ≥ 0. Choose α ∈ [0, 1) uniformly at random. Define Sα := {v ∈ V | dv ≤ α}. Show that

Eα[c(Sα, S̄α)] := Eα
[∑

e∈Sα ce
]
≤
∑

e ceye.

(ii) Infer that minα c(Sα, S̄α) is a min-s-t-cut. (Make sure you see why we could not choose
α ∈ [0, 2]?) Given {ye}e∈E find this min-cut in poly-time. (We will see how to solve the LP
in poly-time as well, later in the course.)

This proves max-flow = min-cut, albeit using the heavier hammer of strong LP duality.

4. SDP Rounding for Max 2-XOR In this problem, we will analyze an algorithm for a
generalization of the Max Cut problem. In the Max 2-XOR problem, the input is an undirected
graph G(V,E) on n = |V | vertices and m = |E| edges along with “right-hand sides” bi,j ∈ {−1, 1},
one for each {i, j} ∈ E. We say that an x ∈ {−1, 1}n satisfies an edge {i, j} ∈ E if xixj = bi,j .
The 2-XOR value of the instance is the maximum over all x ∈ {−1, 1}n of the fraction of the edges
satisfied by x. The Max 2-XOR problem is to take input G, {bi,j}{i,j}∈E and output an x that
satisfies the maximum possible fraction of edges.

(i) Convince yourself that if bi,j = 1 for each {i, j} ∈ E, then, Max 2-XOR is same as the
Max-Cut problem on graph G.

(ii) Let A ∈ Rn×n be the matrix such that Ai,j = Aj,i = bi,j if {i, j} ∈ E and Ai,j = Aj,i = 0
otherwise. Consider the semidefinite program P :

max
1

2
+

1

4m
〈A,X〉 s.t.{X ∈ Rn×n | X � 0, Xi,i = 1 for each 1 ≤ i ≤ n}.

(Recall from HW#0: 〈A,X〉 =
∑

i,j Ai,jXi,j is the Frobenius inner product on matrices.)
Prove that P is a relaxation of the Max 2-XOR problem.

(iii) Let’s analyze the Goemans-Williamson rounding algorithm for this problem. Let X = V V >

be a Cholesky decomposition of X for matrix V ∈ Rn×n with rows V1, V2, . . . , Vn. Let g ∼
N(0, 1)n be a standard Gaussian vector (i.e., each gi is an independent draw from N (0, 1)).
For each i, set xi = sign(〈g, Vi〉).
Use the analysis from class to prove that if the value of the input instance is 1 − ε for any
ε > 0, then 1−O(

√
ε) fraction of constraints are satisfied by x in expectation.
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Problems

1. Adding to a Tree. In the Tree Addition problem, you are given a tree T = (V,E) and a
collection of edges J = {ei = {ui, vi}}mi=1 (called jumps) on the same set V of vertices. Adding a
jump to a tree creates a cycle, and we say that the jump “covers” the tree edges on this cycle. (In
other words, all edges on the unique path between vertices ui and vi are covered by jump ei.) The
jumps have costs, and we want to add the smallest-cost set of jumps that cover all tree edges.

(a) (Do not submit.) Given an O(log n) approximation, where n = |V |.

(b) Suppose T has a root node r: this defines a notion of ancestors/descendents. Suppose all the
jumps ei have the property that one end (say ui) is a descendent of the other end vi in T . Solve
this problem in polynomial time. (Hint: dynamic programming.) If you are stuck, start with
the case where T is a path, and the root is one end of this path.

(c) Use the previous part to give a 2-approximation for the general case, where jumps can go
between nodes that are not ancestors/descendents.

2. Maximizing Quadratics. We now design an algorithm that, given a homogenous degree-2
polynomial p(x) =

∑
i,j pi,jxixj , outputs an approximate maximizer of p over x ∈ {−1, 1}n. We

will assume, in addition, that pi,i = 0 for each 1 ≤ i ≤ n.

(i) Basic Algorithm. (2 points) Let’s give a baseline solution which will be useful in the final
analysis of the rounding. Prove that maxx∈{−1,1}n p(x) ≥ 1

n

∑
i,j |pi,j |.

(Hint: Let M be a perfect matching of the complete graph on [n]. For each edge {i, j} ∈ M ,
let Yi be set uniformly at random from {−1, 1} and let Yj = Yi if pi,j > 0 and Yj = −Yi
otherwise. Prove that E[p(Y )] =

∑
{i,j}∈M |pi,j |. Now think about choosing M randomly and

repeating the above analysis.)

(ii) Interval constraints do not help. (1 points) Prove that for a polynomial p as above, the
maximum of p over x ∈ [−1, 1]n is equal to the maximum of p over x ∈ {−1, 1}n. (Hint:
Think of a natural “randomized” rounding of a maximizer y ∈ [−1, 1]n into a x ∈ {−1, 1}n
such that E[p(x)] = p(y).)

(iii) SDP Relaxation. (1 points) Let A ∈ Rn×n be the matrix such that Ai,j = Aj,i = pi,j for
each {i, j} ∈ E and Ai,j = Aj,i = 0 otherwise. Consider the semidefinite program:

max{〈A,X〉 | X ∈ Rn×n, X � 0, Xi,i = 1 for each 1 ≤ i ≤ n}. (1)

Show this is a relaxation for the problem.

We will now give a rounding algorithm for the SDP. Given part (ii) it suffices to give a randomized
rounding algorithm that takes X and outputs a fractional solution x ∈ [−1, 1]n. Let X be an
optimal solution to (1) and let OPTSDP be the optimum value. Let X = V V > be a Cholesky
decomposition of X for some matrix V ∈ Rn×n with rows V1, V2, . . . , Vn ∈ Rn. Let g ∼ N (0, 1)n

be a standard Gaussian vector. For some B > 0 (to be chosen later), let zi = 1
B 〈g, Vi〉 for each

1 ≤ i ≤ n. If |zi| ≤ 1, set xi = zi. Otherwise, set xi = sign(zi).

In the following parts, we analyze this rounding algorithm.

(iv) Prove that for every i, j, E[zizj ] = 1
B2Xi,j .
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(v) Let R be the event that {|zi| ≤ 1 and |zj | ≤ 1}. Prove that E[(zizj − xixj)1R] = 0, where 1R
indicates the 0-1 indicator for event R.

(vi) Let R̄ be the complement of the event R. Prove that |E[xixj1R̄]| ≤ 2e−B
2/2. (Hint: give an

upper bound on the chance that R̄ happens.)

(vii) Prove that for any i, j, |E[zizj1R̄]| ≤ 100e−B
2/2.

(viii) Use bounds from previous 3 parts to conclude that |E[zizj ] − E[xixj ]| ≤ 1000e−B
2/2. Derive

that E[p(x)] ≥ 1
B2OPTSDP − 1000 e−B

2/2
∑

i,j |pi,j |.

(ix) Set B = O(
√

log n). Use the basic algorithm along with the conclusion of (viii) to conclude
that the algorithm provides an approximation ratio of O(log n) for our problem.

Some facts you may use without proof. If z ∼ N (0, 1), for any t ≥ 1, the following hold (1) Pr[z >
t] ≤ e−t2/2, (2) E[|z| · 1(z≥t)] ≤ e−t

2/2, (3) E[z2 · 1(z≥t)] ≤ 10te−t
2/2.

3. Low-Dimensional Hitting Set. Suppose (U,S) is a set system with VC dimension d. (See
the exercises for definitions.) Recall the hitting set problem from HW#1 exercises, which you
argued was equivalent to the set cover problem. Let x∗ be an optimal solution to the hitting set
LP

min

{∑
e

xe |
∑
e∈S

xe ≥ 1 ∀S ∈ S, xe ≥ 0

}
,

and let LP ∗ =
∑

e x
∗
e be the optimal LP value. Give an O(d logLP ∗)-approximation for (unit

weight) hitting set on this set system. Hint: define a probability distribution µ over U , such that
µ(S) ≥ 1/LP ∗ for all sets S ∈ S.

4. Graph Coloring and Eigenvalues Let G = (V,E) be a graph with n vertices and nd/2
edges. Let dmax be the maximum degree of any vertex in G. A proper k-coloring of G is a map of
vertices to colors from {1, 2, . . . , k} so that every edge has endpoints with different colors.

(i) (1 point) Prove that G has a proper coloring using dmax + 1 colors. (Hint: be greedy!)

(ii) (2 points) Suppose that for every i, vertex i has at most r neighbors in {1, 2, . . . , i−1}. Prove
that G has a proper coloring with r + 1 colors.

(iii) (2 points) Prove that dmax ≥ λmax(A) ≥ d where λmax(A) denotes the largest eigenvalue of
the adjacency matrix A of G. You may want to use the characterization and bounds on λmax

from the exercises in HW0.

(iv) (2 points) Let B be a matrix obtained by removing the ith row and ith column of A for any
i. Prove that the λmax(B) ≤ λmax(A).

(v) (3 points) Infer that there is an ordering of vertices of G such that every vertex v has at most
bλmax(A)c neighbors in G that appear before v in the ordering.

Hence, you get that G has a proper k-coloring for k = bλmax(A)c+ 1. This is never worse than the
bound in (i) above, and may be much smaller.
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