Advanced Approximation Algorithms CMU 15-854B, Fall 2021

HOMEWORK 1
Due: Wednesday, Sep 22, 11:59pm EST on Gradescope

Exercises (do not submit)

1. Setting the Stage, Covering some Basics.

(a) Show that the HITTING SET problem on m sets and n ground elements is equivalent to the
SET COVER problem on n sets and m ground elements.

(b) Observe that the VERTEX COVER problem on a graph with n vertices and m edges is a special
case of SET COVER on a set system with m ground elements and n sets, where each element
belongs to exactly two sets.

(c) Given a SET COVER instance where each element belongs to at most f sets. Give an LP-
rounding algorithm for such instances that is an f-approximation. (Hint: consider the case
f =2, what do the LP constraints look like?)

(d) Show that the greedy algorithm for SET COVER achieves an O(log(n/OPT))-approximation.
(Hint: first show it for the unweighted case.)

(e) We saw an LP rounding algoritm we saw for SET COVER in Lecture #2. Give an algorithmic
gap instance for it: namely give the instance, give an optimal LP solution for it, such that we
would need Q(logn) rounds of independently picking each set S with probability xg in order
to guarantee a good set cover.

2. Bounded Degree Instances are Often Easier. Suppose each set S € & has size at
most B < n, and sets have costs. The charging argument in lecture already showed that the greedy
algorithm incurs a cost of at most Hg OPT = O(log B) OPT'. Let’s give an LP-rounding algorithm
that achieves this result.

(a) For each element e € U, let S(e) € S be the least-cost set that contains e. Show that
2 Cs(e) < LP < OPT.

(b) Give an algorithm that solves the LP and then picks some sets (randomly) based on the optimal
LP solution (and has a clean-up phase at the end), so that the expected cost at most O(log B)
times the LP value.

3. Submodularity. Given a set X, a function f : 2¥ — R maps subsets of X to real values.
It is monotone if f(A) < f(B) for all A C B. For a set A C X and element e € X, define the
marginal value of e with respect to X to be

fa(e) = f(A+e) - f(A). (1)



(Henceforth we use A + e to mean AU {e}, and A — e to mean A\ {e}.) The function f is called
submodular if for every A C B and e & B,

fa(e) > fa(e). (2)
In words, the marginal value of e with respect to supersets is smaller, we have diminishing marginal
returns.

(a) Often submodularity of f is defined thus: for every C, D subsets of X,
flCuD)+ f(CND)<f(C)+ f(D). (3)
Show that and are equivalent to each other.
(b) Given a set system (U,S = {S1,S2,...,Sm}) with m sets, define X := {1,2,...,m}. Define

the set coverage function f(A) := | Ujea Si| for each A C X. Show that f is submodular and
monotone.

(c) Given an undirected graph G = (X, E), and a subset A C X, define A to be the set of edges
with exactly one endpoint in A, and the other outside A. Define f(A) := |0A| be the cut
function. Show that f is submodular but not monotone.

(d) There are many other examples of submodular functions. E.g., consider a collection of (discrete)

random variables Y1,Y5,...,Y, with some joint probability distribution. For a set A C [n],
define the (Shannon) entropy of r.v.s indexed by the set A as
H(A) == Y Prlriea(Yi = u)] logy PriAica(Yi = yi)).
Yiq "'yi‘A‘

The function H (where H(A) can be be thought of as “the information content” of the r.v.s
indexed by A) is a monotone submodular function.

4. Facility Location via Set Cover. Problem 1.4 from [WS10].

5. Deterministic Rounding for Max-Coverage. (This exercise steps through the determin-
istic rounding algorithm we discussed at the end of Lecture #2.) Given an instance of MAX-
COVERAGE and a fractional solution (z, z), consider the function fe(z) =1 —[]g..cg(1 —zs), and
the expected coverage function f(z) = )", fe(x). Finally, define

9(€) == f(z +elei — €;))
where e;, e; are the standard basis vectors in the ith | j* directions.

(a) Argue that g(e) is convex in the variable €.

(b) Suppose z is a feasible solution where both x;,x; are fractional in (0, 1). Use convexity of g to
argue that there exist a, f > 0 such that (i) the two solutions = + a(e; — e;) or z — B(e; —€;)
have at least one integer coordinate, and (ii) the f-value of at least one of these two solutions
is higher than f(z).

(c¢) If z is an integral solution feasible for the LP, then f(z) is the coverage given by the feasible
solution {S; | x; = 1}.

Repeatedly moving from some z! to the new solution xz!*! allows us to end up with an integer
solution after at most n steps. Each move increases the f value. Hence the final coverage is
f(@finat) = f(xinie) > (1 —1/e) LP; the last inequality uses 1 +y < e¥ and was argued in lecture.




Problems

[WS10] is the Williamson and Shmoys| textbook, linked off the course page too.

1. Fun with Vertex-Cover. For each of the following approximation algorithms for Min-Vertex-
Cover with positive vertex costs: (a) prove the best approximation ratio guarantee that you can,
and (b) give matching algorithmic gaps if possible. (ILe., if you show a p-approximation, give in-
stances showing that the algorithm cannot do much better than p.) Some of these algorithms do
better for the special case when all costs are 1: if that is the case, please point it out.

a) Super Naive: Consider all the edges in some order. If the edge {u, v} being considered is not
covered yet, pick whichever of u or v has less cost.

b) Naive: Consider all the edges in some order. If the edge {u,v} being considered is not
covered yet, pick both the vertices v and v.

¢) Randomized: Consider all the edges in some order. If the edge {u, v} being considered is not

covered yet, with probability cuﬁ:cv pick the vertex u, and with the remaining probability, pick v.

d) LP rounding: The standard Vertex-Cover LP is the following: minimize »_ ¢,z, subject to
Xy + xy > 1 for all edges {u,v} € E, and z > 0. Given a fractional solution for this LP, define
Vo ={v €V |2, > a}. What value of o ensures that V, is a vertex cover? What approximation
guaratee can you get?

e) Local search: Define two solutions S C V and S’ C V to be neighbors if S can be obtained
from S’ by adding, deleting, or swapping a vertex. (Swapping means simultaneously adding a ver-
tex and dropping another.) The local search moves are simple: Start with any solution S C V; if
you are at some solution S, move to any neighboring solution S’ that has less cost. If you are at a
local optimum — where all the neighbors have at least as much cost — output this local optimum.
(Don’t worry about the running time for this algorithm.)

number of edgis newly coveredj until all the

f) Greedy: Repeatedly pick a vertex v that maximizes
edges are covered.

2. George and Leslie. Problem 1.5 from [WS10].
3. Frame thy Fearful (A)Symmetry. Problem 1.3 from [WS10].

4. Submodular Goes Only So Far. (Please try the exercise on submodularity before you start
this problem.) Given a monotone submodular function f : 2V — R with f(@) = 0, you want to
pick a set A with k elements that maximizes f(A).

(a) Show that this problem is NP-hard to approximate better than 1 — 1/e. (You may use any
theorems from lecture, without proof.)

(b) Show that for any set A, the marginal value function fa(-) := f(AU-)— f(A) is also monotone
submodular. Moreover, show that any non-negative submodular function g is subadditive, i.e.,
g(AUB) < g(A) + g(B) for disjoint sets A, B.


http://www.designofapproxalgs.com/

(c) Consider the following greedy algorithm: start with Ag = &, and let e; < arg maxecy fa,_, (€)
and then A; + Ay 1 + e If A® is an optimal set, show that

f(Ag) = (1 =1/e) - f(A7).

Now consider the following variant of this submodular maximization problem: you are given
a partition Uy, Us,...,U; of U into k parts. You want to pick exactly one element e; from each
part U; to maximize f({e1,...,er}). Consider the greedy algorithm as above, where now e; <

arg maXeey, fAt—l (6) .

(d) Show this modified greedy algorithm is a %—approximation.

(e) Give a reduction from instances G of MAX-LABEL-COVER to instances G of this problem
that has (a) perfect completeness, and (b) the following soundness: if value(G) < n then
value(G) < % + O(n). Give a couple sentences arguing this completeness and soundness.
(Hint: this is an easy reduction, given the Lecture.)



