
Advanced Approximation Algorithms CMU 15-854B, Fall 2021

Homework 1
Due: Wednesday, Sep 22, 11:59pm EST on Gradescope

Exercises (do not submit)

1. Setting the Stage, Covering some Basics.

(a) Show that the Hitting Set problem on m sets and n ground elements is equivalent to the
Set Cover problem on n sets and m ground elements.

(b) Observe that the Vertex Cover problem on a graph with n vertices and m edges is a special
case of Set Cover on a set system with m ground elements and n sets, where each element
belongs to exactly two sets.

(c) Given a Set Cover instance where each element belongs to at most f sets. Give an LP-
rounding algorithm for such instances that is an f -approximation. (Hint: consider the case
f = 2, what do the LP constraints look like?)

(d) Show that the greedy algorithm for Set Cover achieves an O(log(n/OPT ))-approximation.
(Hint: first show it for the unweighted case.)

(e) We saw an LP rounding algoritm we saw for Set Cover in Lecture #2. Give an algorithmic
gap instance for it: namely give the instance, give an optimal LP solution for it, such that we
would need Ω(log n) rounds of independently picking each set S with probability xS in order
to guarantee a good set cover.

2. Bounded Degree Instances are Often Easier. Suppose each set S ∈ S has size at
most B ≤ n, and sets have costs. The charging argument in lecture already showed that the greedy
algorithm incurs a cost of at most HB OPT = O(logB)OPT . Let’s give an LP-rounding algorithm
that achieves this result.

(a) For each element e ∈ U , let S(e) ∈ S be the least-cost set that contains e. Show that
1
B

∑
e cS(e) ≤ LP ≤ OPT .

(b) Give an algorithm that solves the LP and then picks some sets (randomly) based on the optimal
LP solution (and has a clean-up phase at the end), so that the expected cost at most O(logB)
times the LP value.

3. Submodularity. Given a set X, a function f : 2X → R maps subsets of X to real values.
It is monotone if f(A) ≤ f(B) for all A ⊆ B. For a set A ⊆ X and element e ∈ X, define the
marginal value of e with respect to X to be

fA(e) := f(A+ e)− f(A). (1)
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(Henceforth we use A+ e to mean A ∪ {e}, and A− e to mean A \ {e}.) The function f is called
submodular if for every A ⊆ B and e ̸∈ B,

fA(e) ≥ fB(e). (2)

In words, the marginal value of e with respect to supersets is smaller, we have diminishing marginal
returns.

(a) Often submodularity of f is defined thus: for every C,D subsets of X,

f(C ∪D) + f(C ∩D) ≤ f(C) + f(D). (3)

Show that (2) and (3) are equivalent to each other.

(b) Given a set system (U,S = {S1, S2, . . . , Sm}) with m sets, define X := {1, 2, . . . ,m}. Define
the set coverage function f(A) := | ∪i∈A Si| for each A ⊆ X. Show that f is submodular and
monotone.

(c) Given an undirected graph G = (X,E), and a subset A ⊆ X, define ∂A to be the set of edges
with exactly one endpoint in A, and the other outside A. Define f(A) := |∂A| be the cut
function. Show that f is submodular but not monotone.

(d) There are many other examples of submodular functions. E.g., consider a collection of (discrete)
random variables Y1, Y2, . . . , Yn with some joint probability distribution. For a set A ⊆ [n],
define the (Shannon) entropy of r.v.s indexed by the set A as

H(A) := −
∑

yi1 ···yi|A|

Pr[∧i∈A(Yi = yi)] log2 Pr[∧i∈A(Yi = yi)].

The function H (where H(A) can be be thought of as “the information content” of the r.v.s
indexed by A) is a monotone submodular function.

4. Facility Location via Set Cover. Problem 1.4 from [WS10].

5. Deterministic Rounding for Max-Coverage. (This exercise steps through the determin-
istic rounding algorithm we discussed at the end of Lecture #2.) Given an instance of Max-
Coverage and a fractional solution (x, z), consider the function fe(x) = 1−

∏
S:e∈S(1− xS), and

the expected coverage function f(x) =
∑

e fe(x). Finally, define

g(ε) := f(x+ ε(ei − ej))

where ei, ej are the standard basis vectors in the ith, jth directions.

(a) Argue that g(ε) is convex in the variable ε.

(b) Suppose x is a feasible solution where both xi, xj are fractional in (0, 1). Use convexity of g to
argue that there exist α, β > 0 such that (i) the two solutions x+ α(ei − ej) or x− β(ei − ej)
have at least one integer coordinate, and (ii) the f -value of at least one of these two solutions
is higher than f(x).

(c) If x is an integral solution feasible for the LP, then f(x) is the coverage given by the feasible
solution {Si | xi = 1}.

Repeatedly moving from some xt to the new solution xt+1 allows us to end up with an integer
solution after at most n steps. Each move increases the f value. Hence the final coverage is
f(xfinal) ≥ f(xinit) ≥ (1− 1/e)LP ; the last inequality uses 1 + y ≤ ey and was argued in lecture.
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Problems

[WS10] is the Williamson and Shmoys textbook, linked off the course page too.

1. Fun with Vertex-Cover. For each of the following approximation algorithms for Min-Vertex-
Cover with positive vertex costs: (a) prove the best approximation ratio guarantee that you can,
and (b) give matching algorithmic gaps if possible. (I.e., if you show a ρ-approximation, give in-
stances showing that the algorithm cannot do much better than ρ.) Some of these algorithms do
better for the special case when all costs are 1: if that is the case, please point it out.

a) Super Naive: Consider all the edges in some order. If the edge {u, v} being considered is not
covered yet, pick whichever of u or v has less cost.

b) Naive: Consider all the edges in some order. If the edge {u, v} being considered is not
covered yet, pick both the vertices u and v.

c) Randomized: Consider all the edges in some order. If the edge {u, v} being considered is not
covered yet, with probability cv

cu+cv
pick the vertex u, and with the remaining probability, pick v.

d) LP rounding: The standard Vertex-Cover LP is the following: minimize
∑

cvxv subject to
xu + xv ≥ 1 for all edges {u, v} ∈ E, and x ≥ 0. Given a fractional solution for this LP, define
Vα = {v ∈ V | xv ≥ α}. What value of α ensures that Vα is a vertex cover? What approximation
guaratee can you get?

e) Local search: Define two solutions S ⊆ V and S′ ⊆ V to be neighbors if S can be obtained
from S′ by adding, deleting, or swapping a vertex. (Swapping means simultaneously adding a ver-
tex and dropping another.) The local search moves are simple: Start with any solution S ⊆ V ; if
you are at some solution S, move to any neighboring solution S′ that has less cost. If you are at a
local optimum — where all the neighbors have at least as much cost — output this local optimum.
(Don’t worry about the running time for this algorithm.)

f) Greedy: Repeatedly pick a vertex v that maximizes number of edges newly covered
cv

, until all the
edges are covered.

2. George and Leslie. Problem 1.5 from [WS10].

3. Frame thy Fearful (A)Symmetry. Problem 1.3 from [WS10].

4. Submodular Goes Only So Far. (Please try the exercise on submodularity before you start
this problem.) Given a monotone submodular function f : 2U → R with f(∅) = 0, you want to
pick a set A with k elements that maximizes f(A).

(a) Show that this problem is NP-hard to approximate better than 1 − 1/e. (You may use any
theorems from lecture, without proof.)

(b) Show that for any set A, the marginal value function fA(·) := f(A∪ ·)− f(A) is also monotone
submodular. Moreover, show that any non-negative submodular function g is subadditive, i.e.,
g(A ∪B) ≤ g(A) + g(B) for disjoint sets A,B.
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(c) Consider the following greedy algorithm: start with A0 = ∅, and let et ← argmaxe∈U fAt−1(e)
and then At ← At−1 + et. If A

∗ is an optimal set, show that

f(Ak) ≥ (1− 1/e) · f(A∗).

Now consider the following variant of this submodular maximization problem: you are given
a partition U1, U2, . . . , Uk of U into k parts. You want to pick exactly one element ei from each
part Ui to maximize f({e1, . . . , ek}). Consider the greedy algorithm as above, where now et ←
argmaxe∈Ut fAt−1(e).

(d) Show this modified greedy algorithm is a 1
2 -approximation.

(e) Give a reduction from instances G of Max-Label-Cover to instances G of this problem
that has (a) perfect completeness, and (b) the following soundness: if value(G) < η then
value(G) < 3

4 + O(η). Give a couple sentences arguing this completeness and soundness.
(Hint: this is an easy reduction, given the Lecture.)
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