## Homework 1

Due: Wednesday, Sep 22, 11:59pm EST on Gradescope

## Exercises (do not submit)

- 1. Setting the Stage, Covering some Basics.
- (a) Show that the HITTING SET problem on m sets and n ground elements is equivalent to the SET COVER problem on n sets and m ground elements.
- (b) Observe that the Vertex Cover problem on a graph with n vertices and m edges is a special case of Set Cover on a set system with m ground elements and n sets, where each element belongs to exactly two sets.
- (c) Given a SET COVER instance where each element belongs to at most f sets. Give an LP-rounding algorithm for such instances that is an f-approximation. (Hint: consider the case f = 2, what do the LP constraints look like?)
- (d) Show that the greedy algorithm for Set Cover achieves an  $O(\log(n/OPT))$ -approximation. (Hint: first show it for the unweighted case.)
- (e) We saw an LP rounding algorith we saw for SET COVER in Lecture #2. Give an algorithmic gap instance for it: namely give the instance, give an optimal LP solution for it, such that we would need  $\Omega(\log n)$  rounds of independently picking each set S with probability  $x_S$  in order to guarantee a good set cover.
- 2. Bounded Degree Instances are Often Easier. Suppose each set  $S \in \mathcal{S}$  has size at most  $B \leq n$ , and sets have costs. The charging argument in lecture already showed that the greedy algorithm incurs a cost of at most  $H_B$   $OPT = O(\log B)$  OPT. Let's give an LP-rounding algorithm that achieves this result.
- (a) For each element  $e \in U$ , let  $S(e) \in \mathcal{S}$  be the least-cost set that contains e. Show that  $\frac{1}{B} \sum_{e} c_{S(e)} \leq LP \leq OPT$ .
- (b) Give an algorithm that solves the LP and then picks some sets (randomly) based on the optimal LP solution (and has a clean-up phase at the end), so that the expected cost at most  $O(\log B)$  times the LP value.
- **3. Submodularity.** Given a set X, a function  $f: 2^X \to \mathbb{R}$  maps subsets of X to real values. It is *monotone* if  $f(A) \leq f(B)$  for all  $A \subseteq B$ . For a set  $A \subseteq X$  and element  $e \in X$ , define the marginal value of e with respect to X to be

$$f_A(e) := f(A+e) - f(A).$$
 (1)

(Henceforth we use A + e to mean  $A \cup \{e\}$ , and A - e to mean  $A \setminus \{e\}$ .) The function f is called submodular if for every  $A \subseteq B$  and  $e \notin B$ ,

$$f_A(e) \ge f_B(e). \tag{2}$$

In words, the marginal value of e with respect to supersets is smaller, we have diminishing marginal returns.

(a) Often submodularity of f is defined thus: for every C, D subsets of X,

$$f(C \cup D) + f(C \cap D) \le f(C) + f(D). \tag{3}$$

Show that (2) and (3) are equivalent to each other.

- (b) Given a set system  $(U, S = \{S_1, S_2, \dots, S_m\})$  with m sets, define  $X := \{1, 2, \dots, m\}$ . Define the set coverage function  $f(A) := |\cup_{i \in A} S_i|$  for each  $A \subseteq X$ . Show that f is submodular and monotone.
- (c) Given an undirected graph G = (X, E), and a subset  $A \subseteq X$ , define  $\partial A$  to be the set of edges with exactly one endpoint in A, and the other outside A. Define  $f(A) := |\partial A|$  be the *cut function*. Show that f is submodular but not monotone.
- (d) There are many other examples of submodular functions. E.g., consider a collection of (discrete) random variables  $Y_1, Y_2, \ldots, Y_n$  with some joint probability distribution. For a set  $A \subseteq [n]$ , define the (Shannon) entropy of r.v.s indexed by the set A as

$$H(A) := -\sum_{y_{i_1} \cdots y_{i_{|A|}}} \Pr[\wedge_{i \in A} (Y_i = y_i)] \log_2 \Pr[\wedge_{i \in A} (Y_i = y_i)].$$

The function H (where H(A) can be be thought of as "the information content" of the r.v.s indexed by A) is a monotone submodular function.

- 4. Facility Location via Set Cover. Problem 1.4 from [WS10].
- 5. Deterministic Rounding for Max-Coverage. (This exercise steps through the deterministic rounding algorithm we discussed at the end of Lecture #2.) Given an instance of MAX-COVERAGE and a fractional solution (x, z), consider the function  $f_e(x) = 1 \prod_{S:e \in S} (1 x_S)$ , and the expected coverage function  $f(x) = \sum_e f_e(x)$ . Finally, define

$$g(\varepsilon) := f(x + \varepsilon(\mathbf{e}_i - \mathbf{e}_i))$$

where  $\mathbf{e}_i, \mathbf{e}_j$  are the standard basis vectors in the  $i^{th}, j^{th}$  directions.

- (a) Argue that  $g(\varepsilon)$  is convex in the variable  $\varepsilon$ .
- (b) Suppose x is a feasible solution where both  $x_i, x_j$  are fractional in (0, 1). Use convexity of g to argue that there exist  $\alpha, \beta > 0$  such that (i) the two solutions  $x + \alpha(\mathbf{e}_i \mathbf{e}_j)$  or  $x \beta(\mathbf{e}_i \mathbf{e}_j)$  have at least one integer coordinate, and (ii) the f-value of at least one of these two solutions is higher than f(x).
- (c) If x is an integral solution feasible for the LP, then f(x) is the coverage given by the feasible solution  $\{S_i \mid x_i = 1\}$ .

Repeatedly moving from some  $x^t$  to the new solution  $x^{t+1}$  allows us to end up with an integer solution after at most n steps. Each move increases the f value. Hence the final coverage is  $f(x_{final}) \ge f(x_{init}) \ge (1 - 1/e) LP$ ; the last inequality uses  $1 + y \le e^y$  and was argued in lecture.

## **Problems**

[WS10] is the Williamson and Shmoys textbook, linked off the course page too.

- 1. Fun with Vertex-Cover. For each of the following approximation algorithms for Min-Vertex-Cover with positive vertex costs: (a) prove the best approximation ratio guarantee that you can, and (b) give matching algorithmic gaps if possible. (I.e., if you show a  $\rho$ -approximation, give instances showing that the algorithm cannot do much better than  $\rho$ .) Some of these algorithms do better for the special case when all costs are 1: if that is the case, please point it out.
- a) Super Naive: Consider all the edges in some order. If the edge  $\{u, v\}$  being considered is not covered yet, pick whichever of u or v has less cost.
- b) Naive: Consider all the edges in some order. If the edge  $\{u, v\}$  being considered is not covered yet, pick both the vertices u and v.
- c) Randomized: Consider all the edges in some order. If the edge  $\{u,v\}$  being considered is not covered yet, with probability  $\frac{c_v}{c_u+c_v}$  pick the vertex u, and with the remaining probability, pick v.
- d) LP rounding: The standard Vertex-Cover LP is the following: minimize  $\sum c_v x_v$  subject to  $x_u + x_v \ge 1$  for all edges  $\{u, v\} \in E$ , and  $x \ge 0$ . Given a fractional solution for this LP, define  $V_{\alpha} = \{v \in V \mid x_v \ge \alpha\}$ . What value of  $\alpha$  ensures that  $V_{\alpha}$  is a vertex cover? What approximation guaratee can you get?
- e) Local search: Define two solutions  $S \subseteq V$  and  $S' \subseteq V$  to be neighbors if S can be obtained from S' by adding, deleting, or swapping a vertex. (Swapping means simultaneously adding a vertex and dropping another.) The local search moves are simple: Start with any solution  $S \subseteq V$ ; if you are at some solution S, move to any neighboring solution S' that has less cost. If you are at a local optimum where all the neighbors have at least as much cost output this local optimum. (Don't worry about the running time for this algorithm.)
- f) Greedy: Repeatedly pick a vertex v that maximizes  $\frac{\text{number of edges newly covered}}{c_v}$ , until all the edges are covered.
- 2. George and Leslie. Problem 1.5 from [WS10].
- 3. Frame thy Fearful (A)Symmetry. Problem 1.3 from [WS10].
- **4. Submodular Goes Only So Far.** (Please try the exercise on submodularity before you start this problem.) Given a monotone submodular function  $f: 2^U \to \mathbb{R}$  with  $f(\emptyset) = 0$ , you want to pick a set A with k elements that maximizes f(A).
- (a) Show that this problem is NP-hard to approximate better than 1 1/e. (You may use any theorems from lecture, without proof.)
- (b) Show that for any set A, the marginal value function  $f_A(\cdot) := f(A \cup \cdot) f(A)$  is also monotone submodular. Moreover, show that any non-negative submodular function g is *subadditive*, i.e.,  $g(A \cup B) \le g(A) + g(B)$  for disjoint sets A, B.

(c) Consider the following greedy algorithm: start with  $A_0 = \emptyset$ , and let  $e_t \leftarrow \arg \max_{e \in U} f_{A_{t-1}}(e)$  and then  $A_t \leftarrow A_{t-1} + e_t$ . If  $A^*$  is an optimal set, show that

$$f(A_k) \ge (1 - 1/e) \cdot f(A^*).$$

Now consider the following variant of this submodular maximization problem: you are given a partition  $U_1, U_2, \ldots, U_k$  of U into k parts. You want to pick exactly one element  $e_i$  from each part  $U_i$  to maximize  $f(\{e_1, \ldots, e_k\})$ . Consider the greedy algorithm as above, where now  $e_t \leftarrow \arg\max_{e \in U_t} f_{A_{t-1}}(e)$ .

- (d) Show this modified greedy algorithm is a  $\frac{1}{2}$ -approximation.
- (e) Give a reduction from instances  $\mathcal{G}$  of MAX-LABEL-COVER to instances  $\mathcal{G}$  of this problem that has (a) perfect completeness, and (b) the following soundness: if  $value(\mathcal{G}) < \eta$  then  $value(\mathcal{G}) < \frac{3}{4} + O(\eta)$ . Give a couple sentences arguing this completeness and soundness. (Hint: this is an easy reduction, given the Lecture.)