
Advanced Approximation Algorithms CMU 15-854B, Fall 2021

Homework 0
Due: Friday, Sep 3, 11:59pm EST on Gradescope

Note: This homework covers some prerequisite material that you should be comfortable with,
they will help you follow the lectures, and appreciate them. The relevant background is covered
in basic classes on algorithms (e.g. 451), complexity, linear algebra, and probability and statistics.
You may not have taken all four, or you may be rusty on some of the material. That’s fine (and
even expected). In that case, please brush up on the fundamentals as you solve this homework.

Exercises

These cover material that is important for the course. However, exercises are not graded, you need
not submit solutions.

1. Matrix Norms, Singular Values, SVD. Let A ∈ Rn×n be a not-necessarily-symmetric
matrix. The spectral norm ∥A∥2 of A is defined as maxv:∥v∥2=1 ∥Av∥2. The Frobenius norm of

A is defined as
√∑

i,j A
2
i,j . The trace of A is defined as

∑
i≤nAi,i. Let σ1 = maxv:∥v∥2=1 ∥Av∥2

and let v1 be a unit vector such that ∥Av1∥2 = σ1. For each i > 1, inductively define σi =
maxv:∥v∥2=1,⟨v,vj⟩=0 for every j<i ∥Av∥2 and vi to be a vector achieving this bound. Prove the following
basic facts:

(a) Spectral Norm vs Singular Value: Prove that σ2
1 ≥ σ2

2 ≥ . . . σ2
n are the n eigenvalues of

the matrix A⊤A.

(b) Spectral Norms vs Row/Column Norms: ∥A∥2 ≤ maxr,c{
∑

j |A(r, j)|,
∑

i |A(i, c)|}.

(c) Comparison of Norms: ∥A∥2 ≤ ∥A∥F = tr(A⊺A)1/2 =
√∑

i≤n σ
2
i .

(d) Orthogonal Invariance: A matrix U is said to be orthogonal if UU⊺ = U⊺U = I. Prove that
∥AU∥2 = ∥A∥2, ∥AU∥F = ∥A∥F and tr(U⊺AU) = tr(A).

(e) Define the Frobenius inner product ⟨A,B⟩F :=
∑

i,j AijBij . Show that ⟨A,B⟩F = tr(AB).

(f) Positive Semidefiniteness: A symmetric matrix A is called positive semidefinite (PSD) if
v⊺Av ≥ 0 for every vector v. Prove that the following are equivalent:

i. A is PSD,

ii. all eigenvalues of A are non-negative,

iii. A = V V ⊺ for some matrix V , and

iv. for every positive semidefinite matrix B, ⟨A,B⟩F ≥ 0.
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Problems

1. The Spectral Hand. Let G = (V,E) be a d-regular, undirected graph on vertices V and
edge set E. Let |V | = n. For each edge {i, j} of G, define matrix Li,j ∈ Rn×n such that Li,j(i, j) =
Li,j(j, i) = −1 and Li,j(i, i) = Li,j(j, j) = 1. All other entries of Li,j are 0. The matrix L = LG =∑

{i,j}∈E Li,j is called the Laplacian matrix of G.

(a) (1 points) For any x, prove that x⊺Lx =
∑

{i,j}:{i,j}∈E(xi − xj)
2. Infer that L is PSD.

Observe that when x ∈ {0, 1}n, x⊺Ax equals twice the number of edges in the cut defined by
the vertices S = {i | xi = 1}.

(b) (3 points) Prove that max cut in G is at most n∥L∥2 (Hint: Use part (a).) You can even prove
n
4 ∥L∥2, but we’re happy with the weaker bound.

(c) (1 points) Prove that L has an eigenvalue equal to 0.

(d) (5 points) Prove that G is disconnected then 0 is an eigenvalue of L with multiplicity ≥ 2. (Hint:
prove that there is a 2 dimensional subspace—related to the connected components—such that
for every vector v in the subspace, Lv = 0.)

2. Let’s Take a Moment. Let X1, X2 . . . , Xn be independent random variables such that
EXi = 0 and EX2

i = 1 for every i. Let X = 1
n

∑
iXi. In this exercise, we will study the polynomial

and the exponential moment methods to bound the probability that X deviates from 0.

(a) (2 points) Prove that Pr[X ≥ M/
√
n] ≤ 1

M2 . (Hint: Apply Markov’s inequality to X
2
.) When

is this inequality tight?

(b) (5 points) Suppose that E[X2t−1
i ] = 0 for every positive integer t and E[X2t

i ] ≤ C2t for some

C > 0 and every t ≤ k for some positive integer k. Compute EX2t
. Give the best bound you

can on EX2k
.

(c) (3 points) Under the hypothesis of part (b), prove that for some absolute constant CC ′ and
every M > 0, Pr[X ≥

√
C ′k M√

n
] ≤ 1

M2k . (Hint: Apply Markov’s inequality to an appropriate

power of X.) When is this inequality tight?

(d) (0 points) Convince yourself that the conclusions of parts (a) and (c) continue to hold even if
Xis are pairwise and 2k-wise independent, respectively. Recall that a set of random variables
is t-wise independent if every subset of size at most t are mutually independent.

(e) (Bonus, Exponential Moment Method.) Prove that Pr[X ≥ M/
√
n] ≤ e−CM2

for some some
absolute constant C. (Hint: Apply Markov’s inequality to Y = exp(sX) for an appropriately
chosen parameter s.)

3. LP Duality. Consider the problem of maximizing (or minimizing)
∑

i cixi over all x ∈ Rn,
xi ≥ 0 for 1 ≤ i ≤ n such that

∑
j Aijxj ≤ bi for 1 ≤ i ≤ m. This optimization problem is called

a linear program (LP) in n variables with m linear inequality constraints, and the linear function∑
i cixi is called the objective function. Points x ∈ Rn satisfying all the constraints are called

feasible, and the maximum (or minimum) value of the objective function over all feasible x is called
the value of the LP. Let’s restrict to the maximization version in the following. Prove the following:
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(a) (3 points) We want to derive an upper bound on the value of the LP. Let ℓ1, ℓ2, . . . , ℓm be
non-negative reals such that

∑
i ℓiAik ≥ ck for every k ≤ n. Prove that the value of the LP is

at most
∑

i≤m ℓibi.

(b) (5 points) Consider the problem of finding the smallest upper bound of the above form on the
value of the LP. Prove that this is an LP with m variables and n+m linear constraints. This
LP is called the dual to the original LP.

(c) (2 points) What is the dual LP of the dual LP derived in part (b)?
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