15-780: Markov Decision Processes

J. Zico Kolter

Feburary 29, 2016

Outline

Introduction

Formal definition

Value iteration

Policy iteration

Linear programming for MDPs

1988

Judea Pearl publishes Probabilistic Reasoning
in Intelligent Systems, bring probability and
Bayesian networks to forefront of Al

Speaking today for the Dickson prize at
12:00, McConomy Auditorium Cohon
University Center

Outline

Introduction

Decision making under uncertainty

Building upon our recent discussions about probabilistic modeling,
we want to consider a framework for decision making under
uncertainty

Markov decision processes (MDPs) and their extensions provide an
extremely general way to think about how we can act optimally
under uncertainty

For many medium-sized problems, we can use the techniques from
this lecture to compute an optimal decision policy

For large-scale problems, approximate techniques are often needed
(more on these in later lectures), but the paradigm often forms the
basis for these approximate methods

Markov decision processes

A more formal definition will follow, but at a high level, an MDP is
defined by: states, actions, transition probabilities, and rewards

States encode all information of a system needed to determine how
it will evolve when taking actions, with system governed by the state
transition probabilities

P(st41|8¢, ar)

note that transitions only depend on current state and action, not
past states/actions (Markov assumption)

Goal for an agent is to take actions that maximize expected reward

Graphical model representation of MDP

5bd

\

Applications of MDPs

A huge number of applications of MDPs, using standard solution
methods: see e.g. [White, “A survey of applications of Markov
decision processes”, 1993]

Survey lists: population harvesting, agriculture, water resources,
inspection, purchasing, finance, queues, sales, search, insurance,
overbooking, epidemics, credit, sports, patient admission, location,
experimental design

But, perhaps more compelling is the number of applications of using
approximate solutions: self-driving cars, video games, robot soccer,
scheduling energy generation, autonomous flight, many many others

In these domains, small components of the problem are still often
solved with exact methods

Outline

Formal definition

Formal MDP definition

A Markov decision process is defined by:

A set of states S (assumed for now to be discrete)
A set of actions A (also assumed discrete)

Transition probabilities P, which defined the probability distribution
over next states given the current state and current action
P(St+1 |St7 At)

Crucial point: transitions only depend on the current state and
action (Markov assumption)

A reward function R : S — R, mapping states to real numbers (can
also define rewards over state/action pairs)

Gridworld domain

Simple grid world with a goal state with reward and a “bad state”

with reward -100

Actions move in the desired direction with probably 0.8, in one of the
perpendicular directions with

Taking an action that would bump into a wall leaves agent where it is

0 0 0 1
] BE
0 0 0 0

Action = north
P=028

1

P =0.1 <+

—> P =0.1

Policies and value functions

A policy is a mapping from states to actions 7 : S — A (can also
define stochastic policies)

A value function for a policy, written V™ : § — R gives the
expected sum of discounted rewards when acting under that policy

Z’y | so =8, a; = 7(8¢), St+1|5t, ap ~ P

where v < 1is a discount factor (also formulations for finite horizon,
infinite horizon average reward)

Can also define value function recursively via the Bellman equation

VT(s) = R(s) +v) P(s'|s,m(s) V7 (s")

s'eS

Aside: computing the policy value
Let v™ € RIS be a vector of values for each state, r € RIS| be a
vector of rewards for each state
Let P™ e RISI*ISI be a matrix containing probabilities for each

transition under policy pi

Pj = P(si11 = ilst = j, a = m(st))

Then Bellman equation can be written in vector form as
v =r+~yP"0"
= (I —yP")0" =r
— "= (I —~P")Ir

i.e., computing value for a policy requires solving a linear system

Optimal policy and value function

The optimal policy is the policy that achieves the highest value for
every state
7 = argmax V™ (s)
s

and it's value function is written V* = V™" (but there are an
exponential number of policies, so this formulation is not very useful)

Instead, we can directly define the optimal value function using the
Bellman optimality equation

V*(s) =R P(s V*(s'

(s) = R(s) +ymax > P(s'|s, a) V*(5)
s'eS

and optimal policy is simply the action that attains this max

7 (s) = argmax Z P(s's,a) V*(s")
@ s'eS

Value iteration

Outline

Computing the optimal policy

How do we compute the optimal policy? (or equivalently, the optimal
value function?)

Approach #1; value iteration: repeatedly update an estimate of the
optimal value function according to Bellman optimality equation

1. Initialize an estimate for the value function arbitrarily

V(s)« 0, Vs €S

2. Repeat, update:

V(s) & R(s) + ymax %P(sq& a)V(s'), Vse€S

lllustration of value iteration

Running value iteration with v = 0.9

0 . 0 -100

Original reward function

lllustration of value iteration

Running value iteration with v = 0.9

0 0 0.72 | 1.81

0 . 0 |-99.91

0 0 0 0

V at one iteration

lllustration of value iteration

Running value iteration with v = 0.9

0.809|1.598|2.475|3.745

0.268 . 0.302 |-99.59

0]0.034(0.122]0.004

V at five iterations

lllustration of value iteration

Running value iteration with v = 0.9

2.686 | 3.527|4.402 |5.812

2.021 . 1.095 |-98.82

1.390|0.903(0.738]0.123

V at 10 iterations

lllustration of value iteration

Running value iteration with v = 0.9

5.47016.313|7.190 | 8.669

4.802 . 3.347 |-96.67

4.16113.654 [3.222 | 1.526

V at 1000 iterations

lllustration of value iteration

Running value iteration with v = 0.9

—»—»—»T

1 B
Pl

Resulting policy after 1000 iterations

Convergence of value iteration

Theorem: Value iteration converges to optimal value: V- V*

Proof: For any estimate of the value function 17, we define the
Bellman backup operator B : RIS — RIS

BV (s) = R(s)+ 7 max Z P(s'|s,a) V(s')
s'eS

We will show that Bellman operator is a contraction, that for any
value function estimates V7, Vs

max |BVi(s) — BVa(s)| < ymax |Vi(s) — Va(s)]
SES seS

Since BV* = V™ (the contraction property also implies existence
and uniqueness of this fixed point), we have:

mag‘BV(s) - V*(s)‘ < 'yma;(‘f/(s) - V*(s)‘ — VoV
EIS s€

18

Proof of contraction property:

\BVl(s) — BVQ(S)‘

maxz s'|s,a) Vi(s maXZ s'|s,a) Va(s')

s'eS s'€S
<
7{{1635\(ZP |saV1 ZP |5aV2)
s’eS s’eS
— P(s Vi(s") — Va(s'
g 3 P) 405~ V)

< —
< ymax|Vi(s) — Va(s)|
where third line follows from property that
| max f(z) —max g(z)| < max|f(z) —g(z)]

and final line because P(s’|s, a) are non-negative and sum to one

Value iteration convergence

How many iterations will it take to find optimal policy?

Assume rewards in [0, Ryax], then

Rmax
I—7

V*(S) < Z’YtRmax =
t=1

Then letting V'* be value after kth iteration

’yk Rmax

k _ U* <
mage [V(s) = V7 (5)] < T

i.e., we have linear convergence to optimal value function

But, time to find optimal policy depends on separation between
value of optimal and second suboptimal policy, difficult to bound

20

Asynchronous value iteration

Subtle point, standard value iteration assumes f/(s) are all updated
synchronously, i.e. we compute
V'(s) = R(s) + v max Ps’s,af/s/
(s) = R(s) 'VaeAs%(' V()

~

and then set V(s) < V'(s)

Alternatively, can loop over states s = 1, ..., |S| (or randomize over
states), and directly set

1% R P(s' V(s
(s) + (8)+7glgj<£ (5|3, a) V(s

Latter is known as asynchronous value iteration (also called
Gauss-Seidel value iteration given fixed ordering), is also guaranteed
to converge, and usually performs better in practice

21

Policy iteration

Outline

22

Policy iteration
Another approach to computing optimal policy / value function

Policy iteration algorithm
1. Initialize policy 7 (e.g., randomly)

2. Compute value of policy, V™ (e.g., via solving linear system, as
discussed previously)

3. Update 7 to be greedy policy with respect to V'™

7(s) < argmax Z P(s|s,a) V7 (s)
@ s'eS

4. If policy m changed in last iteration, return to step 2

23

Convergence property of policy iteration: m — 7*

Proof involves showing that each iteration is also a contraction, and
policy must improve each step, or be optimal policy

Interesting theoretical note: since number of policies is finite (though
exponentially large), policy iteration converges to exact optimal policy

In theory, could require exponential number of iterations to converge
(though only for «y very close to 1), but for some problems of interest,
converges much faster

24

lllustration of policy iteration

Running policy iteration with v = 0.9, initialized with policy
7(s) = North

0 . 0 -100

Original reward function

25

lllustration of policy iteration

Running policy iteration with v = 0.9, initialized with policy
7(s) = North

0.418]0.884 | 2.331 | 6.367

0.367 .—8.61 0]-105.7

-0.168|-4.641|-14.27(-85.05

V™ at one iteration

lllustration of policy iteration

Running policy iteration with v = 0.9, initialized with policy
7(s) = North

5.41416.248|7.116 | 8.634

4.753 . 2.881(-102.7

2.251 (1.977(1.849|-8.701

V™ at two iterations

lllustration of policy iteration

Running policy iteration with v = 0.9, initialized with policy
7(s) = North

5.47016.313|7.190 | 8.669

4.803 . 3.347 |-96.67

4.161(3.654 | 3.222 | 1.526

V7™ at three iterations (converged)

Gridworld results

Approximation of value function

- Policy iteration: exact value function after three iterations
- Value iteration: after 100 iterations, ||V — V*|| = 7.1 x 1074

Calculation of optimal policy

- Poalicy iteration: three iterations

- Value iteration: 12 iterations

In other words, value iteration converges to optimal policy long
before it converges to correct value in this MDP (but, this property is
highly MDP-specific)

26

Policy iteration or value iteration?

Policy iteration requires fewer iterations that value iteration, but each
iteration requires solving a linear system instead of just applying
Bellman operator

In practice, policy iteration is often faster, especially if the transition
probabilities are structured (e.g., sparse) to make solution of linear
system efficient

Modified policy iteration (Putterman and Shin, 1978) solves linear
system approximately, using backups very similar to value iteration,
and often performs better than either value or policy iteration

27

Linear programming for MDPs

Outline

28

Linear programming solution methods

A slightly less frequently described method for MDPs: solution via
linear programming

Basic idea: we can capture the constraint

V(s) > R(s)+ ymax Z P(s,|s,a) V(s
s'eS

via the set of |.A] linear constraints

V(s)>R(s)+v Y P(s's,a)V(s'), YacA
s'eS

29

Now consider the linear program
minimize Vs
e 3V

subject to V() +'yZP Is,a)V(s'), Vac A,s €S
s'eS

Theorem: the optimal value of this linear program will be V*

Proof: Suppose there exists some s € S with

V(s) > R(s) —{—vlgleajc Z P(s'|s,a)V(s)
s'eS

Then we can construct a solution with only V (s) changed to make
this an equality: this will have a lower objective value, but be feasible,
since it can only decrease right hand side for other constraints

30

Comments on LP formulation

In objective, we can optimize any positive linear function of V()
and the result above still holds

If we optimize
. d
minimize Z (s)V(s)
subject to V() +'yZP Is,a)V(s'), Vae A,s €S
s'eS

where d(s) is a distribution over states, then objective is equal to
total expected accumluted reward when beginning at a state drawn
from this distribution

31

Adding dual variables 1(s, a) for each constraint, dual problem is
(after some simplification)

maximize R(s) Z u(s, a)

u(s:a) sES acA
subject to Z (s',a) =d(s +WZZP (s']s,a)u(s,a) Vs' €S
acA sES acA
p(s,a) 20

These have the interpretation that

Zv (Sy=s,4;,=a)

t=0

i.e., they are discounted state-action counts, which directly encode
the optimal policy
7 (s) = max u(s, a)
acA

32

LP versus value/policy iteration

Some surprising connections between LP formulation and standard
value and policy iteration algorithms: e.g. a certain form of dual
simplex is equivalent to policy iteration

Typically, best specialized MDP algorithms (e.g. modified policy
iteration) are faster than general LP algorithms, but the LP
formulation provides a number of connections to other methods,
and has also been the basis for much work in approximate
large-scale MDP solutions (e.g., de Farias and Van Roy, 2003)

33

	Introduction
	Formal definition
	Value iteration
	Policy iteration
	Linear programming for MDPs

