
15-780: Deep
Learning

J. Zico Kolter

March 1 – April 4, 2016

1

Outline

Introduction

Machine learning with neural networks

Training neural networks

Convolutional neural networks

Recurrent neural networks

Deep reinforcement learning

2

Outline

Introduction

Machine learning with neural networks

Training neural networks

Convolutional neural networks

Recurrent neural networks

Deep reinforcement learning

3

1980 1985 1990 1995 2000 2005 2010 2015
0.0

0.1

0.2

0.3

0.4

0.5

0.6
#neural network / #machine learning

Google scholar counts of papers containing “neural network” divided
by count of papers containing “machine learning”

4

Popularization of backprop
for training neural networks

Academic papers on unsupervised
pre-training for deep networks

“AlexNet” deep neural network
wins ImageNet 2012 contest

Facebook launches AI research
center, Google buys DeepMind

A non-exhaustive list of some of the important events that impacted
this trend

5

“AlexNet” (Krizhevsky et al., 2012), winning entry of ImageNet 2012
competition with a Top-5 error rate of 15.3% (next best system with
highly engineered features based upon SIFT got 26.1% error)

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

6

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

Some classification results from AlexNet

7

Google Deep Dream software: adjust input images (by gradient
descent) to strengthen the activations that are present in an image

8

Question answering network (Vinyals and Le, 2015), using sequence
to sequence learning method (Sutskever et al., 2014)A Neural Conversational Model

used for neural machine translation and achieves im-
provements on the English-French and English-German
translation tasks from the WMT’14 dataset (Luong et al.,
2014; Jean et al., 2014). It has also been used for
other tasks such as parsing (Vinyals et al., 2014a) and
image captioning (Vinyals et al., 2014b). Since it is
well known that vanilla RNNs suffer from vanish-
ing gradients, most researchers use variants of Long
Short Term Memory (LSTM) recurrent neural net-
works (Hochreiter & Schmidhuber, 1997).

Our work is also inspired by the recent success of neu-
ral language modeling (Bengio et al., 2003; Mikolov et al.,
2010; Mikolov, 2012), which shows that recurrent neural
networks are rather effective models for natural language.
More recently, work by Sordoni et al. (Sordoni et al., 2015)
and Shang et al. (Shang et al., 2015), used recurrent neural
networks to model dialogue in short conversations (trained
on Twitter-style chats).

Building bots and conversational agents has been pur-
sued by many researchers over the last decades, and it
is out of the scope of this paper to provide an exhaus-
tive list of references. However, most of these systems
require a rather complicated processing pipeline of many
stages (Lester et al., 2004; Will, 2007; Jurafsky & Martin,
2009). Our work differs from conventional systems by
proposing an end-to-end approach to the problem which
lacks domain knowledge. It could, in principle, be com-
bined with other systems to re-score a short-list of can-
didate responses, but our work is based on producing an-
swers given by a probabilistic model trained to maximize
the probability of the answer given some context.

3. Model
Our approach makes use of the sequence-to-sequence
(seq2seq) framework described in (Sutskever et al., 2014).
The model is based on a recurrent neural network which
reads the input sequence one token at a time, and predicts
the output sequence, also one token at a time. During train-
ing, the true output sequence is given to themodel, so learn-
ing can be done by backpropagation. The model is trained
to maximize the cross entropy of the correct sequence given
its context. During inference, given that the true output se-
quence is not observed, we simply feed the predicted output
token as input to predict the next output. This is a “greedy”
inference approach. A less greedy approach would be to
use beam search, and feed several candidates at the previ-
ous step to the next step. The predicted sequence can be
selected based on the probability of the sequence.

Concretely, suppose that we observe a conversation with
two turns: the first person utters “ABC”, and second person
replies “WXYZ”. We can use a recurrent neural network,

Figure 1. Using the seq2seq framework for modeling conversa-
tions.

and train to map “ABC” to “WXYZ” as shown in Figure 1
above. The hidden state of the model when it receives the
end of sequence symbol “<eos>” can be viewed as the
thought vector because it stores the information of the sen-
tence, or thought, “ABC”.

The strength of this model lies in its simplicity and gener-
ality. We can use this model for machine translation, ques-
tion/answering, and conversations without major changes
in the architecture. Applying this technique to conversa-
tion modeling is also straightforward: the input sequence
can be the concatenation of what has been conversed so far
(the context), and the output sequence is the reply.

Unlike easier tasks like translation, however, a model
like sequence-to-sequence will not be able to successfully
“solve” the problem of modeling dialogue due to sev-
eral obvious simplifications: the objective function being
optimized does not capture the actual objective achieved
through human communication, which is typically longer
term and based on exchange of information rather than next
step prediction. The lack of a model to ensure consistency
and general world knowledge is another obvious limitation
of a purely unsupervised model.

4. Datasets
In our experiments we used two datasets: a closed-domain
IT helpdesk troubleshooting dataset and an open-domain
movie transcript dataset. The details of the two datasets are
as follows.

4.1. IT Helpdesk Troubleshooting dataset

In our first set of experiments, we used a dataset which was
extracted from a IT helpdesk troubleshooting chat service.
In this service, costumers face computer related issues, and
a specialist help them by conversing and walking through
a solution. Typical interactions (or threads) are 400 words
long, and turn taking is clearly signaled. Our training set
contains 30M tokens, and 3M tokens were used as valida-
tion. Some amount of clean up was performed, such as
removing common names, numbers, and full URLs.

A Neural Conversational Model

4.2. OpenSubtitles dataset

We also tested our model on the OpenSubtitles
dataset (Tiedemann, 2009). This dataset consists of
movie conversations in XML format. It contains sen-
tences uttered by characters in movies. We applied a
simple processing step removing XML tags and obvi-
ous non-conversational text (e.g., hyperlinks) from the
dataset. As turn taking is not clearly indicated, we treated
consecutive sentences assuming they were uttered by
different characters. We trained our model to predict the
next sentence given the previous one, and we did this for
every sentence (noting that this doubles our dataset size,
as each sentence is used both for context and as target).
Our training and validation split has 62M sentences (923M
tokens) as training examples, and the validation set has
26M sentences (395M tokens). The split is done in such a
way that each sentence in a pair of sentences either appear
together in the training set or test set but not both. Unlike
the previous dataset, the OpenSubtitles is quite large, and
rather noisy because consecutive sentences may be uttered
by the same character. Given the broad scope of movies,
this is an open-domain conversation dataset, contrasting
with the technical troubleshooting dataset.

5. Experiments
In this section, we describe the experimental results with
the two datasets and show some samples of the interac-
tions with the system that we trained. We also compare
the performance of our system against a popular rule-based
bot (CleverBot1) using human evaluations on a set of 200
questions.

5.1. IT Helpdesk Troubleshooting experiments

In this experiment, we trained a single layer LSTM with
1024 memory cells using stochastic gradient descent with
gradient clipping. The vocabulary consists of the most
common 20K words, which includes special tokens indi-
cating turn taking and actor.

At convergence, this model achieved a perplexity of 8,
whereas an n-grammodel achieved 18. Below is a few sam-
ples of simulated troubleshooting sessions for most three
of the most common IT problems (remote access, software
crashes, and password issues). In these conversations,Ma-
chine is our Neural ConversationalModel, andHuman the
human actor interacting with it.

Conversation 1: VPN issues.

Describe your problem: i am having issues ac-
cessing vpn

1http://www.cleverbot.com/

Machine: hi
Human: hello
Machine: could you please let me know what are
the operating systems you are using ?
Human: i am using linux
Machine: ok it was in the ssl vpn on which you
stated it was broken
Machine: please check if you are logged in to
corp network
Machine: what is the error that you are running
please
Human: i am seeing an error related to vpn
Machine: what is the error message that you are
getting when connecting to vpn using network
connect ?
Human: connection refused or something like
that
Machine: may i know the version of network
connect you connect ?
Human: i am not sure i know that
Machine: is the network connect prompting for
any user certificate
Machine: ?
Human: yes
Machine: are you at home or at work at the mo-
ment ?
Machine: office ?
Human: i am at home
Machine: try this
Machine: goto <URL> page and enter your
name and password
Human: done
Machine: try logging in with <NAME> and
check if its working fine now
Human: yes , now it works !
Machine: great
Machine: anything else that i can help
Human: no , that was very useful
Machine: you are other than <NAME> :)
Machine: have a nice night

(The <URL> indeed contains information about vpn ac-
cess.)

Conversation 2: Browser issues.

Describe your problem: browser keeps crashing
Machine: hi
Human: hi
Machine: could you please let me know what is
the operating system you are using ?
Human: linux
Machine: ok this is the issue with the system per-
formance , nasser , tools .
Human: what is that ?

A Neural Conversational Model

4.2. OpenSubtitles dataset

We also tested our model on the OpenSubtitles
dataset (Tiedemann, 2009). This dataset consists of
movie conversations in XML format. It contains sen-
tences uttered by characters in movies. We applied a
simple processing step removing XML tags and obvi-
ous non-conversational text (e.g., hyperlinks) from the
dataset. As turn taking is not clearly indicated, we treated
consecutive sentences assuming they were uttered by
different characters. We trained our model to predict the
next sentence given the previous one, and we did this for
every sentence (noting that this doubles our dataset size,
as each sentence is used both for context and as target).
Our training and validation split has 62M sentences (923M
tokens) as training examples, and the validation set has
26M sentences (395M tokens). The split is done in such a
way that each sentence in a pair of sentences either appear
together in the training set or test set but not both. Unlike
the previous dataset, the OpenSubtitles is quite large, and
rather noisy because consecutive sentences may be uttered
by the same character. Given the broad scope of movies,
this is an open-domain conversation dataset, contrasting
with the technical troubleshooting dataset.

5. Experiments
In this section, we describe the experimental results with
the two datasets and show some samples of the interac-
tions with the system that we trained. We also compare
the performance of our system against a popular rule-based
bot (CleverBot1) using human evaluations on a set of 200
questions.

5.1. IT Helpdesk Troubleshooting experiments

In this experiment, we trained a single layer LSTM with
1024 memory cells using stochastic gradient descent with
gradient clipping. The vocabulary consists of the most
common 20K words, which includes special tokens indi-
cating turn taking and actor.

At convergence, this model achieved a perplexity of 8,
whereas an n-grammodel achieved 18. Below is a few sam-
ples of simulated troubleshooting sessions for most three
of the most common IT problems (remote access, software
crashes, and password issues). In these conversations,Ma-
chine is our Neural ConversationalModel, andHuman the
human actor interacting with it.

Conversation 1: VPN issues.

Describe your problem: i am having issues ac-
cessing vpn

1http://www.cleverbot.com/

Machine: hi
Human: hello
Machine: could you please let me know what are
the operating systems you are using ?
Human: i am using linux
Machine: ok it was in the ssl vpn on which you
stated it was broken
Machine: please check if you are logged in to
corp network
Machine: what is the error that you are running
please
Human: i am seeing an error related to vpn
Machine: what is the error message that you are
getting when connecting to vpn using network
connect ?
Human: connection refused or something like
that
Machine: may i know the version of network
connect you connect ?
Human: i am not sure i know that
Machine: is the network connect prompting for
any user certificate
Machine: ?
Human: yes
Machine: are you at home or at work at the mo-
ment ?
Machine: office ?
Human: i am at home
Machine: try this
Machine: goto <URL> page and enter your
name and password
Human: done
Machine: try logging in with <NAME> and
check if its working fine now
Human: yes , now it works !
Machine: great
Machine: anything else that i can help
Human: no , that was very useful
Machine: you are other than <NAME> :)
Machine: have a nice night

(The <URL> indeed contains information about vpn ac-
cess.)

Conversation 2: Browser issues.

Describe your problem: browser keeps crashing
Machine: hi
Human: hi
Machine: could you please let me know what is
the operating system you are using ?
Human: linux
Machine: ok this is the issue with the system per-
formance , nasser , tools .
Human: what is that ?

9

AlphaGo (Silver et al., 2016) beats Lee Sedol in 5 game competition

10

Outline

Introduction

Machine learning with neural networks

Training neural networks

Convolutional neural networks

Recurrent neural networks

Deep reinforcement learning

11

Supervised
learning
setup
Input features x (i) ∈ Rn

Outputs y(i) ∈ Y (e.g. R, {−1,+1}, {1, . . . , p})

Model parameters θ ∈ Rk

Hypothesis function hθ : Rn → R

Loss function ℓ : R× Y → R+

Machine learning optimization problem

minimize
θ

m∑
i=1

ℓ(hθ(x
(i)), y(i))

12

We mainly considered the linear hypothesis class

hθ(x
(i)) = θTϕ(x (i))

for some set of non-linear features ϕ : Rn → Rk

(Note: previously, we just directly included the non-linear features in
x (i), but here we separate them for clarity)

Example

x (i) = [temperature for day i]

ϕ(x (i)) =


1

x (i)

x (i)2

...


13

Challenges
with
linear
models

Linear models crucially depend on choosing “good” features

Some “standard” choices: polynomial features, radial basis
functions, random features (surprisingly effective)

But, many specialized domains required highly engineered special
features

- E.g., computer vision tasks used Haar features, SIFT features, every
10 years or so someone would engineer a new set of features

Key question: can we come up with an algorithm that will
automatically learn the features themselves?

14

Feature
learning, take
one

Instead of a simple linear classifier, let’s consider a two-stage
hypothesis class where one linear function creates the features,
another models the classifier

hθ(x) = W2ϕ(x) + b2 = W2(W1x + b1) + b2

where

θ = {W1 ∈ Rn×k , b1 ∈ Rk ,W2 ∈ R1×k , b2 ∈ R}

Note that in this notation, we’re explicitly separating the parameters
on the “constant feature” into the b terms

15

Graphical depiction of the above function

x1

x2

xn

...

z1

z2

zk

...
y

W1, b1

W2, b2

But there is a problem:

hθ(x) = W2(W1x + b1) + b2 = W̃ x + b̃ (1)

in other words, we are still just using a normal linear classifier (the
apparent added complexity is not giving us any additional
representational power)

16

Neural
networks
Neural networks are a simple extension of this idea, where we
additionally apply a non-linear function after each linear
transformation

hθ(x) = f2(W2f1(W1x + b1) + b2)

where f1, f2 : R→ R are some non-linear functions (applied
elementwise to vectors)

Common choices for fi are hyperbolic tangent
tanh(x) = (e2x − 1)/(e2x + 1), sigmoid σ(x) = 1/(1 + e−x), or
rectified linear unit f (x) = max{0, x}

4 3 2 1 0 1 2 3 4
1.0

0.5

0.0

0.5

1.0
tanh

4 3 2 1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
sigmoid

4 3 2 1 0 1 2 3 4
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

relu

17

We draw these the same as before (non-linear functions are virtually
always implied in the neural network setting)

x1

x2

xn

...

z1

z2

zk

...
y

W1, b1

W2, b2

Middle layer z is referred to as the hidden layer or activations

These are the learned features, nothing in the data that prescribes
what values these should take, left up to the algorithm to decide

18

Properties
of
neural
networks

It turns out that a neural network with a single hidden layer (and a
suitably large number of hidden units) is a universal function
approximator, can approximate any function over the input
arguments (but this is actually not very useful in practice, c.f.
polynomials fitting any sets of points for high enough degree)

The hypothesis class hθ is not a convex function of the parameters
θ = {Wi , bi}, so we must resort to non-convex optimization
methods

Architectural choices (how many layers, how are they connected),
become important free parameters, more on this later

19

Deep
learning
“Deep” neural networks refer to networks with multiple hidden layers

z1 = x

...
...

W1, b1

z5... ...

z2 z3 z4

W3, b3

W4, b4

= hθ(x)

W2, b2

Mathematically, a k -layer network has the hypothesis function
zi+1 = fi(Wizi + bi), i = 1, . . . , k − 1, z1 = x

hθ(x) = zk

where zi terms now indicate vectors, not entries into a vector
20

Why
use
deep
networks?

Motivation from circuits: many functions can be represented more
compactly using deep networks than one-hidden layer networks
(e.g. parity function would require (2n) hidden units in 3-layer
network, O(n) units in O(logn)-layer network)

Motivation from neurobiology: brain appears to use multiple levels of
interconnected neurons to process information (but careful, neurons
in brain are not just non-linear functions)

In practice: works better for many domains

21

Outline

Introduction

Machine learning with neural networks

Training neural networks

Convolutional neural networks

Recurrent neural networks

Deep reinforcement learning

22

Optimizing
neural
network
parameters

How do we optimize the parameters for the machine learning loss
minimization problem with a neural network

minimize
θ

m∑
i=1

ℓ(hθ(x
(i)), y(i))

now that this problem is non-convex?

Just do exactly what we did before: initialize with random weights
and run stochastic gradient descent

Now have the possibility of local optima, and function can be harder
to optimize, but we won’t worry about all that because the resulting
models still often perform better than linear models

23

Stochastic
gradient
descent
for
neural
networks
Recall that stochastic gradient descent computes gradients with
respect to loss on each example, updating parameters as it goes

function SGD({(x (i), y(i))}, hθ, ℓ, α)
Initialize: Wj , bj ← Random, j = 1, . . . , k
Repeat until convergence:

For i = 1, . . . ,m :
Compute ∇Wj ,bj ℓ(hθ(x

(i)), y(i)), j = 1, . . . , k − 1
Take gradient steps in all directions:
Wj ←Wj − α∇Wj ℓ(hθ(x

(i)), y(i)), j = 1, . . . , k

bj ← bj − α∇bj ℓ(hθ(x
(i)), y(i)), j = 1, . . . , k

return {Wj , bj }

So how do we compute the gradients ∇Wj ,bj ℓ(hθ(x
(i)), y(i)), this

is a complex function of the parameters
24

Backpropagation

Backpropagation is a method for computing all the necessary
gradients using one “forward pass” (just computing all the values at
layers), and one “backward pass” (computing gradients backwards
in the network)

The equations sometimes look complex, but it’s just an application
of the chain rule of calculus

25

The
Jacobian
One (last!) bit of multivariate calculus will help us derive the
backpropagation algorithm using purely matrix and vector
operations

For a multivariate, vector-valued function f : Rn → Rm , the
Jacobian is a m × n matrix

(
∂f (x)

∂x

)
∈ Rm×n =


∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xn...

...
∂fm (x)
∂x1

∂fm (x)
∂x2

· · · ∂fm (x)
∂xn


For a scalar-valued function f : Rn → R, the Jacobian is the
transpose of the gradient ∂f (x)

∂x

T
= ∇x f (x)

26

We’ll use a few simple properties of the Jacobian to derive the
backpropagation algorithm for neural networks

Chain rule
∂f (g(x))

∂x
=

∂f (g(x))

∂g(x)

∂g(x)

∂x

Jacobian of a linear transformation, for A ∈ Rm×n

∂Ax

∂x
= A

If f is a function applied elementwise,

∂f (x)

∂x
= diag(f ′(x))

27

Derivation
of
backpropagation
Using the chain rule to compute derivatives:

∂ℓ(hθ(x), y)

∂b1
=

∂ℓ(zk , y)

∂b1

=
∂ℓ(zk , y)

∂zk

∂zk
∂b1

=
∂ℓ(zk , y)

∂zk

∂zk
∂zk−1

∂zk−1

∂zk−2
· · · ∂z3

∂z2

∂z2
∂b1

Furthermore, for any i
∂zi+1

∂zi
=

∂fi(Wizi + bi)

∂Wizi + bi

∂Wizi + bi
∂zi

= diag(f ′i (Wizi + bi))Wi

and
∂zi+1

∂bi
=

∂fi(Wizi + bi)

∂Wizi + bi

∂Wizi + bi
∂bi

= diag(f ′i (Wizi + bi))

28

If we compute derivatives with respect to all bi , and Wi just using
this formula, we’d be repeating a lot of work (e.g. all the ∂zi+1

∂zi
terms

that appear in multiple derivatives)

Backpropagation caches these intermediate products, specifically
defining

gTi =
∂ℓ(zk , y)

∂zk

∂zk
∂zk−1

· · · ∂zi+1

∂zi
which can be computed recursively via the relationship

gk =
∂ℓ(zk , y)

∂zk

gi = W T
i (gi+1 ◦ f ′(Wizi + bi))

where ◦ denotes elementwise multiplication of vectors

Gradients can then be computed via
∇bi ℓ(hθ(x), y) = gi+1 ◦ f ′(Wizi + bi)

∇Wi ℓ(hθ(x), y) = (gi+1 ◦ f ′(Wizi + bi))z
T
i 29

As mentioned, algorithmically backpropagation takes the form of
one forward pass (to compute zi terms) and one backward pass (to
compute gi terms) through the network

function Backpropagation(x , y , {Wi , bi , fi}k−1
i=1 , ℓ)

Initialize: z1 ← x
For i = 1, . . . , k − 1

zi+1, z
′
i+1 ← fi(Wizi + bi), f

′
i (Wizi + bi)

L← ℓ(zk , y)

gk ← ∂ℓ(zk ,y)
∂zk

For i = k − 1, . . . , 1:
gi = W T

i (gi+1 ◦ z ′i+1)
∇bi ← gi+1 ◦ z ′i+1

∇Wi ← (gi+1 ◦ z ′i+1)z
T
i

return L, {∇bi ,∇Wi}
k−1
i=1

30

Gradients can still get somewhat tedious to derive by hand,
especially for the more complex models that follow

Fortunately, a lot of this work has already been done for you

Tools like Theano
(http://deeplearning.net/software/theano/), Torch
(http://torch.ch/), TensorFlow
(http://www.tensorflow.org/) all let you specify the network
structure and then automatically compute all gradients (and use
GPUs to do so)

Autograd package for Python
(https://github.com/HIPS/autograd) lets you compute the
derivative of (almost) any arbitrary function using numpy operations
using automatic backpropagation

31

http://deeplearning.net/software/theano/
http://torch.ch/
http://www.tensorflow.org/
https://github.com/HIPS/autograd

What’s
changed
since
the
80s?

All these algorithms (and most of the extensions in later slides), were
developed in the 80s or 90s

So why are these just becoming more popular in the last few years?

- More data

- Faster computers

- (Some) better optimization techniques

32

Unsupervised
pre-training
(Hinton
et
al., 2006): “Pre-train” the
newtork have the hidden layers recreate their input, one layer at a
time, in an unsupervised fashion

- This paper was partly responsible for re-igniting the interest in deep
neural networks, but the general feeling now is that it doesn’t help
much

Dropout
(Hinton
et
al., 2012): During training and computation of
gradients, randomly set about half the hidden units to zero (a
different randomly selected set for each stochastic gradient step)

- Acts like regularization, prevents the parameters for overfitting to
particular examples

Different
non-linear
functions
(Nair
and
Hinton, 2010): Use
non-linearity f (x) = max{0, x} instead of f (x) = tanh(x)

33

Outline

Introduction

Machine learning with neural networks

Training neural networks

Convolutional neural networks

Recurrent neural networks

Deep reinforcement learning

34

The
problem
with
fully-connected
networks

A 256x256 (RGB) image =⇒ ~200,000 dimensional input

A fully connected deep network would need a large number of
parameters, very likely to overfit to training data

A generic deep network also doesn’t capture much of the “natural”
invariances we expect in images (location, scale)

zi
zi+1

(Wi)1

zi
zi+1

(Wi)2

35

Convolutional
neural
networks
Constrain the weights in two ways: require that activations between
layers occurs only in a “local” manner, and require that activations
share the same weights across all locations

zi
zi+1

Wi

zi
zi+1

Wi

We write the convolutions as zi+1 = zi ∗Wi

Greatly reduces the number of parameters, and provides a model
that captures translational invariance

36

We actually use “3D” convolutions to combine multiple channels,
and create multiple features using multiple convolutions at each level

zi
zi+1

(Wi)1

zi
zi+1

(Wi)2

(weights at level i can be represented as four-dimensional tensor)

Also common to include max-pooling layers that take maximum
over regions, to reduce size of layers

zi

zi+1

max

37

Computing
gradients
in
convolutional
networks
How do we compute gradient terms in a convolutional model?

Almost the same as with standard backpropagation (convolutions
are just linear operators)

Consider 1D convolution: zi ∗ w for w ∈ R3, zi ∈ R6

zi+1 = fi(zi ∗ w + bi) = fi(Wizi + b)

where

Wi =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


︸ ︷︷ ︸

Select “valid” entries


w2 w3 0 0 0 w1

w1 w2 w3 0 0 0
0 w1 w2 w3 0 0
0 0 w1 w2 w3 0
0 0 0 w1 w2 w3

w3 0 0 0 w1 w2


︸ ︷︷ ︸

Circular convolution 38

Computing gradients in backprop involves multiplication by Wi (a
convolution) and multiplication by W T

i

We don’t want to actually form the Wi matrix described above, but
note that

W T
i =


w2 w1 0 0 0 w3

w3 w2 w1 0 0 0
0 w3 w2 w1 0 0
0 0 w3 w2 w1 0
0 0 0 w3 w2 w1

w1 0 0 0 w3 w2


︸ ︷︷ ︸

Convolution with w flipped


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


︸ ︷︷ ︸

Zero padding

In other words, we can multiply by “W T
i ” by zero-padding the

vector and applying another convolution

A few more trivial details to compute gradient of weights,
subgradients of max-pooling, etc, but it is still all just the chain rule

39

Some
example
networks

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

LeNet-5 (LeCun et al., 1998) architecture, achieves 1% error in MNIST
digit classification

40

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

“AlexNet” (Krizhevsky et al., 2012), winner of ILSVRC 2012

41

Published as a conference paper at ICLR 2015

Table 1: ConvNet configurations (shown in columns). The depth of the configurations increases
from the left (A) to the right (E), as more layers are added (the added layers are shown in bold). The
convolutional layer parameters are denoted as “conv⟨receptive field size⟩-⟨number of channels⟩”.
The ReLU activation function is not shown for brevity.

ConvNet Configuration
A A-LRN B C D E

11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers

input (224× 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64

LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool

conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128 conv3-128

maxpool
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv1-256 conv3-256 conv3-256
conv3-256

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
soft-max

Table 2: Number of parameters (in millions).
Network A,A-LRN B C D E
Number of parameters 133 133 134 138 144

such layers have a 7 × 7 effective receptive field. So what have we gained by using, for instance, a
stack of three 3×3 conv. layers instead of a single 7×7 layer? First, we incorporate three non-linear
rectification layers instead of a single one, which makes the decision function more discriminative.
Second, we decrease the number of parameters: assuming that both the input and the output of a
three-layer 3× 3 convolution stack has C channels, the stack is parametrised by 3

(

32C2
)

= 27C2

weights; at the same time, a single 7 × 7 conv. layer would require 72C2 = 49C2 parameters, i.e.
81% more. This can be seen as imposing a regularisation on the 7× 7 conv. filters, forcing them to
have a decomposition through the 3× 3 filters (with non-linearity injected in between).

The incorporation of 1 × 1 conv. layers (configuration C, Table 1) is a way to increase the non-
linearity of the decision function without affecting the receptive fields of the conv. layers. Even
though in our case the 1× 1 convolution is essentially a linear projection onto the space of the same
dimensionality (the number of input and output channels is the same), an additional non-linearity is
introduced by the rectification function. It should be noted that 1×1 conv. layers have recently been
utilised in the “Network in Network” architecture of Lin et al. (2014).

Small-size convolution filters have been previously used by Ciresan et al. (2011), but their nets
are significantly less deep than ours, and they did not evaluate on the large-scale ILSVRC
dataset. Goodfellow et al. (2014) applied deep ConvNets (11 weight layers) to the task of
street number recognition, and showed that the increased depth led to better performance.
GoogLeNet (Szegedy et al., 2014), a top-performing entry of the ILSVRC-2014 classification task,
was developed independently of our work, but is similar in that it is based on very deep ConvNets

3

VGG Network (Simonyan and Zisserman, 2015), 2nd place in ILSVRC
2014

42

input

Conv
7x7+2(S)

MaxPool
3x3+2(S)

LocalRespNorm

Conv
1x1+1(V)

Conv
3x3+1(S)

LocalRespNorm

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

AveragePool
7x7+1(V)

FC

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax0

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax1

SoftmaxActivation

softmax2

Figure 3: GoogLeNet network with all the bells and whistles

7

1x1 convolutions 3x3 convolutions 5x5 convolutions

Filter
concatenation

Previous layer

3x3 max pooling

(a) Inception module, naı̈ve version

1x1 convolutions

3x3 convolutions 5x5 convolutions

Filter
concatenation

Previous layer

3x3 max pooling1x1 convolutions 1x1 convolutions

1x1 convolutions

(b) Inception module with dimension reductions

Figure 2: Inception module

increase in the number of outputs from stage to stage. Even while this architecture might cover the
optimal sparse structure, it would do it very inefficiently, leading to a computational blow up within
a few stages.

This leads to the second idea of the proposed architecture: judiciously applying dimension reduc-
tions and projections wherever the computational requirements would increase too much otherwise.
This is based on the success of embeddings: even low dimensional embeddings might contain a lot
of information about a relatively large image patch. However, embeddings represent information in
a dense, compressed form and compressed information is harder to model. We would like to keep
our representation sparse at most places (as required by the conditions of [2]) and compress the
signals only whenever they have to be aggregated en masse. That is, 1⇥1 convolutions are used to
compute reductions before the expensive 3⇥3 and 5⇥5 convolutions. Besides being used as reduc-
tions, they also include the use of rectified linear activation which makes them dual-purpose. The
final result is depicted in Figure 2(b).

In general, an Inception network is a network consisting of modules of the above type stacked upon
each other, with occasional max-pooling layers with stride 2 to halve the resolution of the grid. For
technical reasons (memory efficiency during training), it seemed beneficial to start using Inception
modules only at higher layers while keeping the lower layers in traditional convolutional fashion.
This is not strictly necessary, simply reflecting some infrastructural inefficiencies in our current
implementation.

One of the main beneficial aspects of this architecture is that it allows for increasing the number of
units at each stage significantly without an uncontrolled blow-up in computational complexity. The
ubiquitous use of dimension reduction allows for shielding the large number of input filters of the
last stage to the next layer, first reducing their dimension before convolving over them with a large
patch size. Another practically useful aspect of this design is that it aligns with the intuition that
visual information should be processed at various scales and then aggregated so that the next stage
can abstract features from different scales simultaneously.

The improved use of computational resources allows for increasing both the width of each stage
as well as the number of stages without getting into computational difficulties. Another way to
utilize the inception architecture is to create slightly inferior, but computationally cheaper versions
of it. We have found that all the included the knobs and levers allow for a controlled balancing of
computational resources that can result in networks that are 2� 3⇥ faster than similarly performing
networks with non-Inception architecture, however this requires careful manual design at this point.

5 GoogLeNet

We chose GoogLeNet as our team-name in the ILSVRC14 competition. This name is an homage to
Yann LeCuns pioneering LeNet 5 network [10]. We also use GoogLeNet to refer to the particular
incarnation of the Inception architecture used in our submission for the competition. We have also
used a deeper and wider Inception network, the quality of which was slightly inferior, but adding it
to the ensemble seemed to improve the results marginally. We omit the details of that network, since
our experiments have shown that the influence of the exact architectural parameters is relatively

5

GoogLeNet (Szegedy et al., 2014), winner of ILSVRC 2014

43

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 128, /2

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 256, /2

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 512, /2

3x3 conv, 512

1x1 conv, 2048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2048

ave pool, fc 1000

7x7 conv, 64, /2, pool/2

AlexNet, 8 layers
(ILSVRC 2012)

Revolution of Depth
ResNet, 152 layers

(ILSVRC 2015)

3x3 conv, 64

3x3 conv, 64, pool/2

3x3 conv, 128

3x3 conv, 128, pool/2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

fc, 4096

fc, 4096

fc, 1000

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000

VGG, 19 layers
(ILSVRC 2014)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.

Deep Residual Learning

• 𝐹𝐹 𝑥𝑥 is a residual mapping w.r.t. identity

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.

• If identity were optimal,
easy to set weights as 0

• If optimal mapping is closer to identity,
easier to find small fluctuations

weight layer

weight layer

relu

relu

𝑥𝑥

𝐻𝐻 𝑥𝑥 = 𝐹𝐹 𝑥𝑥 + 𝑥𝑥

identity
𝑥𝑥

𝐹𝐹(𝑥𝑥)

Deep ResNet (He et al., 2015), winner of ILSVRC 2015

44

Outline

Introduction

Machine learning with neural networks

Training neural networks

Convolutional neural networks

Recurrent neural networks

Deep reinforcement learning

45

Predicting
temporal
data
So far, the models we have discussed have been applicable to
independent inputs x (1), . . . , x (m)

In practice, we often want to predict a sequence of outputs, given a
sequence of inputs

x(1) x(2) x(3)

y(1) y(2) y(3)

· · ·

Just predicting each output independently would miss crucial
information

Many examples: time series forecasting, sentence labeling, part of
speech tagging, etc 46

Basic
recurrent
neural
network
Recurrent neural network, maintain hidden state over time, hidden
state is function of current input and previous hidden state

x(1) x(2) x(3)

ŷ(1) ŷ(2) ŷ(3)

z(1) z(2) z(3)

· · ·

Wxz Wxz Wxz

Wzy Wzy Wzy

Wzz Wzz Wzz

z
(t)
2 = f1(Wxzx

(t) +Wzz z
(t−1) + b1)

ŷ(t) = f2(Wzyz
(t) + b2)

47

Training
recurrent
neural
networks

Most common for training recurrent neural networks is to “unroll”
prediction on some dataset x (1:T), y(1:T), minimize the loss
function

minimize
Wxz ,Wzz ,Wzy

T∑
t=1

ℓ(ŷ(t), y(t))

Equivalent to backpropagation in a “deep” network where each layer
is constrained to have the same weights

Some issues: initializing first hidden layer (just have a hidden
“previous” layer of all zeros), how long of sequence (pick something
big, say 100)

48

Long
short
term
memory
(LSTM) newtorks
Trouble with plain RNNs is that it is difficult to capture long-term
dependencies (e.g., if we see a “(” character, we expect a “)” to
follow at some point)

One solution, long short term memory (LSTM) network (Hochreiter
and Schmidhuber, 1997), has more complex structure that
specifically encodes memory and pass-through features, able to
capture these longer dependencesEvolving Recurrent Neural Network Architectures

Figure 1. The LSTM architecture. The value of the cell is in-
creased by it�jt, where � is element-wise product. The LSTM’s
output is typically taken to be ht, and ct is not exposed. The for-
get gate ft allows the LSTM to easily reset the value of the cell.

we can close the gap between the LSTM and the better ar-
chitectures. Thus, we recommend to increase the bias to
the forget gate before attempting to use more sophisticated
approaches.

We also performed ablative experiments to measure the im-
portance of each of the LSTM’s many components. We dis-
covered that the input gate is important, that the output gate
is unimportant, and that the forget gate is extremely signif-
icant on all problems except language modelling. This is
consistent with Mikolov et al. (2014), who showed that a
standard RNN with a hard-coded integrator unit (similar to
an LSTM without a forget gate) can match the LSTM on
language modelling.

2. Long Short-Term Memory
In this section, we briefly explain why RNNs can be dif-
ficult to train and how the LSTM addresses the vanishing
gradient problem.

Standard RNNs suffer from both exploding and vanishing
gradients (Hochreiter, 1991; Bengio et al., 1994). Both
problems are caused by the RNN’s iterative nature, whose
gradient is essentially equal to the recurrent weight matrix
raised to a high power. These iterated matrix powers cause
the gradient to grow or to shrink at a rate that is exponential
in the number of timesteps.

The exploding gradients problem is relatively easy to
handle by simply shrinking gradients whose norms ex-
ceed a threshold, a technique known as gradient clipping
(Mikolov, 2012; Pascanu et al., 2012). While learning
would suffer if the gradient is reduced by a massive fac-

tor too frequently, gradient clipping is extremely effective
whenever the gradient has a small norm the majority of the
time.

The vanishing gradient is more challenging because it does
not cause the gradient itself to be small; while the gradi-
ent’s component in directions that correspond to long-term
dependencies is small, while the gradient’s component in
directions that correspond to short-term dependencies is
large. As a result, RNNs can easily learn the short-term
but not the long-term dependencies.

The LSTM addresses the vanishing gradient problem by
reparameterizing the RNN. Thus, while the LSTM does
not have a representational advantage, its gradient cannot
vanish. In the discussion that follows, let S

t

denote a hid-
den state of an unspecified RNN architecture. The LSTM’s
main idea is that, instead of computing S

t

from S

t�1

di-
rectly with a matrix-vector product followed by a nonlin-
earity, the LSTM directly computes �S

t

, which is then
added to S

t�1

to obtain S

t

. At first glance, this difference
may appear insignificant since we obtain the same S

t

in
both cases. And it is true that computing �S

t

and adding
it to S

t

does not result in a more powerful model. How-
ever, just like a tanh-based network has better-behaved gra-
dients than a sigmoid-based network, the gradients of an
RNN that computes �S

t

are nicer as well, since they can-
not vanish.

More concretely, suppose that we run our architecture for
1000 timesteps to compute S

1000

, and suppose that we wish
to classify the entire sequence into two classes using S

1000

.
Given that S

1000

=

P
1000

t=1

�S

t

, every single �S

t

(in-
cluding �S

1

) will receive a sizeable contribution from the
gradient at timestep 1000. This immediately implies that
the gradient of the long-term dependencies cannot vanish.
It may become “smeared”, but it will never be negligibly
small.

The full LSTM’s definition includes circuitry for comput-
ing �S

t

and circuitry for decoding information from S

t

.
Unfortunately, different practitioners use slightly different
LSTM variants. In this work, we use the LSTM architec-
ture that is precisely specified below. It is similar to the
architecture of Graves (2013) but without peep-hole con-
nections:

i

t

= tanh(W

xi

x

t

+W

hi

h

t�1

+ b

i

)

j

t

= sigm(W

xj

x

t

+W

hj

h

t�1

+ b

j

)

f

t

= sigm(W

xf

x

t

+W

hf

h

t�1

+ b

f

)

o

t

= tanh(W

xo

x

t

+W

ho

h

t�1

+ b

o

)

c

t

= c

t�1

� f

t

+ i

t

� j

t

h

t

= tanh(c

t

)� o

t

In these equations, the W⇤ variables are the weight matri-
ces and the b⇤ variables are the biases. The operation �

Evolving Recurrent Neural Network Architectures

Figure 1. The LSTM architecture. The value of the cell is in-
creased by it�jt, where � is element-wise product. The LSTM’s
output is typically taken to be ht, and ct is not exposed. The for-
get gate ft allows the LSTM to easily reset the value of the cell.

we can close the gap between the LSTM and the better ar-
chitectures. Thus, we recommend to increase the bias to
the forget gate before attempting to use more sophisticated
approaches.

We also performed ablative experiments to measure the im-
portance of each of the LSTM’s many components. We dis-
covered that the input gate is important, that the output gate
is unimportant, and that the forget gate is extremely signif-
icant on all problems except language modelling. This is
consistent with Mikolov et al. (2014), who showed that a
standard RNN with a hard-coded integrator unit (similar to
an LSTM without a forget gate) can match the LSTM on
language modelling.

2. Long Short-Term Memory
In this section, we briefly explain why RNNs can be dif-
ficult to train and how the LSTM addresses the vanishing
gradient problem.

Standard RNNs suffer from both exploding and vanishing
gradients (Hochreiter, 1991; Bengio et al., 1994). Both
problems are caused by the RNN’s iterative nature, whose
gradient is essentially equal to the recurrent weight matrix
raised to a high power. These iterated matrix powers cause
the gradient to grow or to shrink at a rate that is exponential
in the number of timesteps.

The exploding gradients problem is relatively easy to
handle by simply shrinking gradients whose norms ex-
ceed a threshold, a technique known as gradient clipping
(Mikolov, 2012; Pascanu et al., 2012). While learning
would suffer if the gradient is reduced by a massive fac-

tor too frequently, gradient clipping is extremely effective
whenever the gradient has a small norm the majority of the
time.

The vanishing gradient is more challenging because it does
not cause the gradient itself to be small; while the gradi-
ent’s component in directions that correspond to long-term
dependencies is small, while the gradient’s component in
directions that correspond to short-term dependencies is
large. As a result, RNNs can easily learn the short-term
but not the long-term dependencies.

The LSTM addresses the vanishing gradient problem by
reparameterizing the RNN. Thus, while the LSTM does
not have a representational advantage, its gradient cannot
vanish. In the discussion that follows, let S

t

denote a hid-
den state of an unspecified RNN architecture. The LSTM’s
main idea is that, instead of computing S

t

from S

t�1

di-
rectly with a matrix-vector product followed by a nonlin-
earity, the LSTM directly computes �S

t

, which is then
added to S

t�1

to obtain S

t

. At first glance, this difference
may appear insignificant since we obtain the same S

t

in
both cases. And it is true that computing �S

t

and adding
it to S

t

does not result in a more powerful model. How-
ever, just like a tanh-based network has better-behaved gra-
dients than a sigmoid-based network, the gradients of an
RNN that computes �S

t

are nicer as well, since they can-
not vanish.

More concretely, suppose that we run our architecture for
1000 timesteps to compute S

1000

, and suppose that we wish
to classify the entire sequence into two classes using S

1000

.
Given that S

1000

=

P
1000

t=1

�S

t

, every single �S

t

(in-
cluding �S

1

) will receive a sizeable contribution from the
gradient at timestep 1000. This immediately implies that
the gradient of the long-term dependencies cannot vanish.
It may become “smeared”, but it will never be negligibly
small.

The full LSTM’s definition includes circuitry for comput-
ing �S

t

and circuitry for decoding information from S

t

.
Unfortunately, different practitioners use slightly different
LSTM variants. In this work, we use the LSTM architec-
ture that is precisely specified below. It is similar to the
architecture of Graves (2013) but without peep-hole con-
nections:

i

t

= tanh(W

xi

x

t

+W

hi

h

t�1

+ b

i

)

j

t

= sigm(W

xj

x

t

+W

hj

h

t�1

+ b

j

)

f

t

= sigm(W

xf

x

t

+W

hf

h

t�1

+ b

f

)

o

t

= tanh(W

xo

x

t

+W

ho

h

t�1

+ b

o

)

c

t

= c

t�1

� f

t

+ i

t

� j

t

h

t

= tanh(c

t

)� o

t

In these equations, the W⇤ variables are the weight matri-
ces and the b⇤ variables are the biases. The operation �LSTM architecture, figure/equations from (Jozefowicz et al., 2015) 49

Some
example
settings

“Char-RNN” network predicts text one character at a time

Figure and subsequent example from Karpathy, 2015,
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

50

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Char-RNN trained character-by-character level on the Linux source
code

Some random source code sampled from the resulting model
/*
* Increment the size file of the new incorrect UI_FILTER group information
* of the size generatively.
*/

static int indicate_policy(void)
{

int error;
if (fd == MARN_EPT) {

/*
* The kernel blank will coeld it to userspace.
*/

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else
ret = 1;

goto bail;
}
segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;
...

51

Combining
convolution
and
recurrent
networks
Multimodal RNN (Karpathy and Fei-Fei, 2015, though many other
similar ideas), uses the output of a convolution neural network as the
first input to the hidden units of an RNN

but effective extension that additionally conditions the gen-
erative process on the content of an input image. More for-
mally, during training our Multimodal RNN takes the image
pixels I and a sequence of input vectors (x1, . . . , xT

). It
then computes a sequence of hidden states (h1, . . . , ht

) and
a sequence of outputs (y1, . . . , yt) by iterating the following
recurrence relation for t = 1 to T :

b

v

= W

hi

[CNN
✓c(I)] (13)

h

t

= f(W
hx

x

t

+W

hh

h

t�1 + b

h

+ (t = 1)� b

v

) (14)
y

t

= softmax(W
oh

h

t

+ b

o

). (15)

In the equations above, W
hi

,W

hx

,W

hh

,W

oh

, x

i

and b

h

, b

o

are learnable parameters, and CNN
✓c(I) is the last layer of

a CNN. The output vector y
t

holds the (unnormalized) log
probabilities of words in the dictionary and one additional
dimension for a special END token. Note that we provide
the image context vector b

v

to the RNN only at the first
iteration, which we found to work better than at each time
step. In practice we also found that it can help to also pass
both b

v

, (W
hx

x

t

) through the activation function. A typical
size of the hidden layer of the RNN is 512 neurons.

RNN training. The RNN is trained to combine a word (x
t

),
the previous context (h

t�1) to predict the next word (y
t

).
We condition the RNN’s predictions on the image informa-
tion (b

v

) via bias interactions on the first step. The training
proceeds as follows (refer to Figure 4): We set h0 = ~0, x1 to
a special START vector, and the desired label y1 as the first
word in the sequence. Analogously, we set x2 to the word
vector of the first word and expect the network to predict
the second word, etc. Finally, on the last step when x

T

rep-
resents the last word, the target label is set to a special END
token. The cost function is to maximize the log probability
assigned to the target labels (i.e. Softmax classifier).

RNN at test time. To predict a sentence, we compute the
image representation b

v

, set h0 = 0, x1 to the START vec-
tor and compute the distribution over the first word y1. We
sample a word from the distribution (or pick the argmax),
set its embedding vector as x2, and repeat this process until
the END token is generated. In practice we found that beam
search (e.g. beam size 7) can improve results.

3.3. Optimization
We use SGD with mini-batches of 100 image-sentence pairs
and momentum of 0.9 to optimize the alignment model. We
cross-validate the learning rate and the weight decay. We
also use dropout regularization in all layers except in the
recurrent layers [59] and clip gradients elementwise at 5
(important). The generative RNN is more difficult to op-
timize, party due to the word frequency disparity between
rare words and common words (e.g. ”a” or the END token).
We achieved the best results using RMSprop [52], which is
an adaptive step size method that scales the update of each
weight by a running average of its gradient norm.

Figure 4. Diagram of our multimodal Recurrent Neural Network
generative model. The RNN takes a word, the context from previ-
ous time steps and defines a distribution over the next word in the
sentence. The RNN is conditioned on the image information at the
first time step. START and END are special tokens.

4. Experiments
Datasets. We use the Flickr8K [21], Flickr30K [58] and
MSCOCO [37] datasets in our experiments. These datasets
contain 8,000, 31,000 and 123,000 images respectively
and each is annotated with 5 sentences using Amazon
Mechanical Turk. For Flickr8K and Flickr30K, we use
1,000 images for validation, 1,000 for testing and the rest
for training (consistent with [21, 24]). For MSCOCO we
use 5,000 images for both validation and testing.
Data Preprocessing. We convert all sentences to lower-
case, discard non-alphanumeric characters. We filter words
to those that occur at least 5 times in the training set,
which results in 2538, 7414, and 8791 words for Flickr8k,
Flickr30K, and MSCOCO datasets respectively.

4.1. Image-Sentence Alignment Evaluation
We first investigate the quality of the inferred text and image
alignments with ranking experiments. We consider a with-
held set of images and sentences and retrieve items in one
modality given a query from the other by sorting based on
the image-sentence score S

kl

(Section 3.1.3). We report the
median rank of the closest ground truth result in the list and
Recall@K, which measures the fraction of times a correct
item was found among the top K results. The result of these
experiments can be found in Table 1, and example retrievals
in Figure 5. We now highlight some of the takeaways.

Our full model outperforms previous work. First, our
full model (“Our model: BRNN”) outperforms Socher et
al. [49] who trained with a similar loss but used a single
image representation and a Recursive Neural Network over
the sentence. A similar loss was adopted by Kiros et al.
[25], who use an LSTM [20] to encode sentences. We list
their performance with a CNN that is equivalent in power
(AlexNet [28]) to the one used in this work, though simi-
lar to [54] they outperform our model with a more powerful
CNN (VGGNet [47], GoogLeNet [51]). “DeFrag” are the
results reported by Karpathy et al. [24]. Since we use dif-
ferent word vectors, dropout for regularization and different
cross-validation ranges and larger embedding sizes, we re-
implemented their loss for a fair comparison (“Our imple-

Some resulting image captions

52

Outline

Introduction

Machine learning with neural networks

Training neural networks

Convolutional neural networks

Recurrent neural networks

Deep reinforcement learning

53

Recall
Q-learning
setup

Q⋆ function encodes discounted sum of future rewards

Q⋆(s, a) gives value of being in state s , taking action a , and acting
optimally thereafter

Q-learning update: in state s , take action a , obtain rewards r and
end up in state s ′

Q̂⋆(s, a)← (1− α)Q̂⋆(s, a) + α

(
r + γ max

a ′
Q̂⋆(s ′, a ′)

)
= Q̂⋆(s, a) + α(r + γ max

a ′
Q̂⋆(s ′, a ′)− Q̂⋆(s, a))

54

Q-learning
with
function
approximation

For large state and action spaces, we clearly can’t represent the
value function explicitly for each state/action pair

Leads to an equivalent update for Q-learning (and TD methods in
general) with function approximation

Given a Q function approximated by parameters θ, Q̂⋆
θ (s, a),

Q-learning update becomes

θ = θ + α

(
r + γ max

a ′
Q̂⋆

θ (s
′, a ′)− Q̂⋆

θ (s, a)

)
∇θQ̂

⋆
θ (s, a)

55

Deep
Q-learning
Deep Q-learning: simply use a neural network (with continuous
output) to represent Q̂⋆

θ (s, a), backprop as before to compute
gradients

Example: Google Deepmind DQN network used to learn to play
Atari games (Mnih et al., 2015)

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).

a b

c d

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400
 1,600
 1,800
 2,000
 2,200

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.

RESEARCH LETTER

5 3 0 | N A T U R E | V O L 5 1 8 | 2 6 F E B R U A R Y 2 0 1 5

Macmillan Publishers Limited. All rights reserved©2015

56

	Introduction
	Machine learning with neural networks
	Training neural networks
	Convolutional neural networks
	Recurrent neural networks
	Deep reinforcement learning

