15-780: Deep Learning

J. Zico Kolter

March 1 — April 4, 2016

Outline

Introduction

Machine learning with neural networks
Training neural networks
Convolutional neural networks
Recurrent neural networks

Deep reinforcement learning

Outline

Introduction

0.6 #neural network / #machine learning

0.5}

0.4t

0.3}

0.2t

0.1}

0

.0
1980 1985 1990 1995 2000 2005 2010 2015

Google scholar counts of papers containing “neural network” divided
by count of papers containing “machine learning”

#neural network / #machine learning

0.6
Facebook launches Al research
05 center, Google buys DeepMind
0.4
“AlexNet” deep neural network
wins ImageNet 2012 contest
0.3F

Popularization of backprop

for training neural networks . .
Academic papers on unsupervised

pre-training for deep networks

0.0
1980 1985 1990 1995 2000 2005 2010 2015

A non-exhaustive list of some of the important events that impacted
this trend

“AlexNet” (Krizhevsky et al., 2012), winning entry of ImageNet 2012
competition with a Top-5 error rate of 15.3% (next best system with
highly engineered features based upon SIFT got 26.1% error)

Max
pooling

mite

container ship

motor scooter

mite container ship motér scooter pard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

= 5 7 ~

-

y
grille mushroom cherry Madagascar cat
convertible agaric dalmatiah squirrel monkey
grille mushroom grape spider monkey
pickup Jjelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

Some classification results from AlexNet

Google Deep Dream software: adjust input images (by gradient
descent) to strengthen the activations that are present in an image

"f

Question answering network (Vinyals and Le, 2015), using sequence
to sequence learning method (Sutskever et al., 2014)

<eos>

—>Xx

N U o B

L]

C <eos>

]

z

T
S
!

=—>
X—> =<

Context
(Previous Sentences)

Machine: hi
Human: hello
Machine: could you please let me know what are
the operating systems you are using ?

Human: i am using linux

Machine: ok it was in the ssi vpn on which you
stated it was broken

Machine: please check if you are logged in to
corp network

Machine: what is the error that you are running
please

Human: i am seeing an error related to vpn
Machine: what is the error message that you are
getting when connecting to vpn using network
connect ?
Human: conneci

refused or hing like

Reply

Machine: is the network connect prompting for
any user certificate

Machine: ?

Human:
Machine: are you at home or at work at the mo-

es

ment ?
Machine: office ?
Human: i am at home
Machine: try this
Machine: goto <URL> page and enter your
name and password
Human: done
Machine: try logging in with <NAME> and
check if its working fine now
Human: yes , now it works !
ine: great

that

Machine: may i know the version of network
connect you connect ?

Human: i am not sure i know that

Machine: anything else that i can help
Human: no , that was very useful
Machine: you are other than <NAME> :)
Machine: have a nice night

AlphaGo (Silver et al., 2016) beats Lee Sedol in 5 game competition

Artificial intelligence: Google's AlphaGo
beats Go master Lee Se-dol

® 12 March 2016 = Technology

g
«00:00:27

A computer program has beaten a master Go player 3-0 in a best-of-five
competition, in what is seen as a landmark moment for artificial intelligence.

Google's AlphaGo program was playing against Lee Se-dol in Seoul, in South
Korea.

Outline

Machine learning with neural networks

Supervised learning setup

Input features z(9) € R™

Outputs ¥ € Y (e.9. R, {—1,+1}, {1,...,p})
Model parameters 6 € R*

Hypothesis function hg : R — R

Loss function £ : R x YV — R

Machine learning optimization problem

C i)y ()
minimize ;f(he(x) yt)

We mainly considered the linear hypothesis class
ho(z) = 6T p(2V)

for some set of non-linear features ¢ : R™ — R*

(Note: previously, we just directly included the non-linear features in
(9, but here we separate them for clarity)

Example

2" = [temperature for day]

Challenges with linear models

Linear models crucially depend on choosing “good” features

Some “standard” choices: polynomial features, radial basis
functions, random features (surprisingly effective)

But, many specialized domains required highly engineered special
features

- E.g., computer vision tasks used Haar features, SIFT features, every

10 years or so someone would engineer a new set of features

Key question: can we come up with an algorithm that will
automatically learn the features themselves?

Feature learning, take one

Instead of a simple linear classifier, let’s consider a two-stage
hypothesis class where one linear function creates the features,
another models the classifier

hg(.r) = W2¢(JJ) + by = WQ(W1$ + bl) + by
where

0 ={ W, e R"* b € R¥, W, € RY** by € R}

Note that in this notation, we’re explicitly separating the parameters
on the “constant feature” into the b terms

Graphical depiction of the above function

But there is a problem:
ho(z) = Wo(Wiz + b)) + by = Wa + b (1)

in other words, we are still just using a normal linear classifier (the
apparent added complexity is not giving us any additional
representational power)

Neural networks

Neural networks are a simple extension of this idea, where we
additionally apply a non-linear function after each linear
transformation

ho(z) = fo(Wafi(Whz + b1) + b2)

where fi, fo : R — R are some non-linear functions (applied
elementwise to vectors)

Common choices for f; are hyperbolic tangent
tanh(z) = (e2* — 1)/(e?* + 1), sigmoid o(z) = 1/(1 + e~%), or
rectified linear unit f(z) = max{0, z}

tanh sigmoid relu

10 10— 40
35}
0.5t 0.8 30}
06l 1 ast
0.0 2.0+
0.4 1 sl
-05 0ol 10f
0.5F

-1,

.0 0ob—"". . . . oob—r v/
-4 -3-2-10 1 2 3 4 -4 -3-2-10 1 2 3 4 -4 -3-2-10 1 2 3 4

We draw these the same as before (non-linear functions are virtually
always implied in the neural network setting)

Middle layer z is referred to as the hidden layer or activations

These are the learned features, nothing in the data that prescribes
what values these should take, left up to the algorithm to decide

Properties of neural networks

It turns out that a neural network with a single hidden layer (and a
suitably large number of hidden units) is a universal function
approximator, can approximate any function over the input
arguments (but this is actually not very useful in practice, c.f.
polynomials fitting any sets of points for high enough degree)

The hypothesis class hg is not a convex function of the parameters
0 = {W;, b}, so we must resort to non-convex optimization
methods

Architectural choices (how many layers, how are they connected),
become important free parameters, more on this later

Deep learning

“Deep” neural networks refer to networks with multiple hidden layers

z9 24

>

21 =2
i@ ,
: | : e = hy(z)
d\ﬁ o

Wi, by W, by W, by

Mathematically, a k-layer network has the hypothesis function
Zig1 = fi(Wizi+ b)), i=1,....k—1, z1 =2
ho(x) = 2
where z; terms now indicate vectors, not entries into a vector

s@oel

20

Why use deep networks?

Motivation from circuits: many functions can be represented more
compactly using deep networks than one-hidden layer networks
(e.g. parity function would require (2™) hidden units in 3-layer
network, O(n) units in O(log n)-layer network)

Motivation from neurobiology: brain appears to use multiple levels of
interconnected neurons to process information (but careful, neurons
in brain are not just non-linear functions)

In practice: works better for many domains

21

Training neural networks

Outline

22

Optimizing neural network parameters

How do we optimize the parameters for the machine learning loss
minimization problem with a neural network

minimize Z;ahe(:c(“),y”))

now that this problem is non-convex?

Just do exactly what we did before: initialize with random weights
and run stochastic gradient descent

Now have the possibility of local optima, and function can be harder
to optimize, but we won’t worry about all that because the resulting
models still often perform better than linear models

23

Stochastic gradient descent for neural networks

Recall that stochastic gradient descent computes gradients with
respect to loss on each example, updating parameters as it goes

function SGD({ (2", y()}, hy, £,)
Initialize: W;, b; <~ Random, j =1,...,k
Repeat until convergence:
Fori=1,...,m:
Compute Vyy, 5, £(hg(z), y), j=1,... k-1
Take gradient steps in all directions:
W; + W; — aVw,l(hg(z¥), y@D), j=1,...k
b + bj — aV, L(hg(z),y D), j=1,...k
return { W}, b;}

So how do we compute the gradients Vv, s, £(hg(z(")), y(*)), this
is a complex function of the parameters

24

Backpropagation

Backpropagation is a method for computing all the necessary
gradients using one “forward pass” (just computing all the values at
layers), and one “backward pass” (computing gradients backwards
in the network)

The equations sometimes look complex, but it’s just an application
of the chain rule of calculus

25

The Jacobian

One (last!) bit of multivariate calculus will help us derive the
backpropagation algorithm using purely matrix and vector

operations

For a multivariate, vector-valued function f : R — R™, the

Jacobian is a m x n matrix

Ofi(z) Ofi(z)
011

ox:

Ofa(z Ofa(z

Gf(x) c Rmxn — 32!151) 32$2)
Ox : :

Ofm(z) Ofm(z)
8%1 8z2

Ofi(z)
oz,
f ()
Oz

Oxy,

For a scalar-valued function f : R™ — R, the Jacobian is the

T
transpose of the gradient 8’(;(;3)

= V.f(x)

26

We'll use a few simple properties of the Jacobian to derive the
backpropagation algorithm for neural networks

Chain rule

9f(g(z)) _ 0f(9(x)) 9g(x)

Ox dg(z) Oz

Jacobian of a linear transformation, for A € R™*n

0Azx

=A
ox

If f is a function applied elementwise,

1) _ giagls'(2))

27

Derivation of backpropagation

Using the chain rule to compute derivatives:
Ol(hg(x),y) _ Oz, y)

ob oby
8‘6(2/6) Y) azk
sz @bl

0z, y) Oz 5%—1 ' 3z3 0z
azk 8zk_1 6zk_2 822 abl

Furthermore, for any ¢
O0ziv1 Ofi(Wizi + b;) OWiz + by
0z; N OW;z; + b; 0z;
and
8Z¢+1 B afz(WzZl + bz) OW,z + b;
ob; N OW;z + b; 0b;

= diag(ﬁ(Wiz + bl)) Wi

= dlag(f (Wizi + bi))

If we compute derivatives with respect to all b;, and W; just using
this formula, we’d be repeating a lot of work (e.g. all the a%; terms
that appear in multiple derivatives)

Backpropagation caches these intermediate products, specifically
defining
T _ O0l(z,,y) Oz '”822'-&-1

9i = 3Zk 8zk_1 8zi
which can be computed recursively via the relationship
0z

9i = W (gix10f'(Wiz + b))
where o denotes elementwise multiplication of vectors

Gradients can then be computed via
Vi l(hg(z),y) = git1 o f'(Wizi + bi)
Vwl(ho(x),y) = (gir10f' (Wizi + b))z

As mentioned, algorithmically backpropagation takes the form of
one forward pass (to compute z; terms) and one backward pass (to
compute g; terms) through the network
function Backpropagation(z, y, { W, bi,fi}f:_f,)
Initialize: z1 < x
Fori=1,...,k—1
Ziv1, % Ji(Wiz + bi), fj(Wizi + b;)
L« Uz, y)
Ik < ng};’y)
Fori=%k—1,...,1
9i = WiT(giJrl o Zz(+1)
Vi, < git10 24
Vi, < (gi410 Z{+1)Zz'T
return L, {vbz‘7 sz}fgll

30

Gradients can still get somewhat tedious to derive by hand,
especially for the more complex models that follow

Fortunately, a lot of this work has already been done for you

Tools like Theano
(http://deeplearning.net/software/theano/), Torch
(http://torch.ch/), TensorFlow
(http://www.tensorflow.org/) all let you specify the network
structure and then automatically compute all gradients (and use
GPUs to do so)

Autograd package for Python
(https://github.com/HIPS/autograd) lets you compute the
derivative of (almost) any arbitrary function using numpy operations
using automatic backpropagation

31

http://deeplearning.net/software/theano/
http://torch.ch/
http://www.tensorflow.org/
https://github.com/HIPS/autograd

What’s changed since the 80s?

All these algorithms (and most of the extensions in later slides), were
developed in the 80s or 90s

So why are these just becoming more popular in the last few years?

- More data
- Faster computers

- (Some) better optimization techniques

32

Unsupervised pre-training (Hinton et al., 2006): “Pre-train” the
newtork have the hidden layers recreate their input, one layer at a
time, in an unsupervised fashion
- This paper was partly responsible for re-igniting the interest in deep
neural networks, but the general feeling now is that it doesn’t help
much

Dropout (Hinton et al., 2012): During training and computation of
gradients, randomly set about half the hidden units to zero (a
different randomly selected set for each stochastic gradient step)

- Acts like regularization, prevents the parameters for overfitting to
particular examples

Different non-linear functions (Nair and Hinton, 2010): Use
non-linearity f(z) = max{0, z} instead of f(x) = tanh(z)

33

Convolutional neural networks

Outline

34

The problem with fully-connected networks
A 256x256 (RGB) image = ~200,000 dimensional input

A fully connected deep network would need a large number of
parameters, very likely to overfit to training data

A generic deep network also doesn’t capture much of the “natural”
invariances we expect in images (location, scale)

Z; Zi
/) Zit1 Vi Zit1

4% 4%
4%

N

D
D\
=

(Wih

35

Convolutional neural networks

Constrain the weights in two ways: require that activations between
layers occurs only in a “local” manner, and require that activations
share the same weights across all locations

Zi Zi

Zit1 Zi+1
LV

] Wi W,

We write the convolutions as z;11 = 2 * W;

Greatly reduces the number of parameters, and provides a model
that captures translational invariance

36

We actually use “3D” convolutions to combine multiple channels,
and create multiple features using multiple convolutions at each level

(weights at level 7 can be represented as four-dimensional tensor)

Also common to include max-pooling layers that take maximum

over regions, to reduce size of layers
Zi

37

Computing gradients in convolutional networks

How do we compute gradient terms in a convolutional model?

Almost the same as with standard backpropagation (convolutions

are just linear operators)

Consider 1D convolution: z; * w for w € R3, z; € RS

Zit1 = filzixw+ b)) = fi(Wiz + b)

where

o o oo
o o o
oo~ O
o= OO
_ o o o
o o oo

Select “valid” entries

w2

wy
0
0
0

w3

w3 0 0 0 wr

Wy W3 0 0 0

wp w2 Wi 0 0
0 wp W2 W3 0
0 0 wy Wy W3
0 0 0 w1 Wa

Circular convolution o

Computing gradients in backprop involves multiplication by W; (a
convolution) and multiplication by WiT

We don’t want to actually form the W; matrix described above, but
note that

we wp 0 0 0 ws 00 0 O

wg wy w; 0 0 0 1 0 0 O

W-T o 0 w3 Wy w1 0 0 01 0 0
v 0 0 Ws wo w 0 0 0 1 0

0 0 0 w3 Wy U1 0 0 0 1

w0 0 0 ws we 0 0 0 O
Convolution with w flipped Zero padding

In other words, we can multiply by “ WiT” by zero-padding the
vector and applying another convolution

A few more trivial details to compute gradient of weights,
subgradients of max-pooling, etc, but it is still all just the chain rule

39

Some example networks

. C3:f. maps 16@10x10
INPUT g‘ o fe:lzusre maps S4: f. maps 16@5x5

s r
Rt
I

Goilayer g layer OUTPUT
120 8 10

|
‘ Full conthection ‘ Gaussian connections
Convolutions i i i Full connection

LeNet-5 (LeCun et al., 1998) architecture, achieves 1% error in MNIST
digit classification

40

' 2048 \dense

2048 2048

128 Max
Max 128 Max pooling
pooling pooling

“AlexNet” (Krizhevsky et al., 2012), winner of ILSVRC 2012

41

ConvNet C:

A T AIRN [B [C b [E
TTweight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight
layers ‘ layers layers L y layers ‘ layers
Tnput (221 % 221 RGB image)

Coma-6d | conv3-64 | conv3-64 | conv3-64 | comv3-64 | conva-6q
‘ LRN cony3-64 ‘ comv3-64 | convi-64 ‘ conv3-64

maxpool
Comv3-128 | conv3-128 | conv3-128 | conv3-128 | conva-128 | conv3-128
‘ ‘ronv3-128 conv3-128 conv]-lZB‘ccnv]-llX

maxpool
Comv3-256 | conv3-256 | conv3-236 Conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 conv3-256 | conv3-256
conv3-256 | conv3-256
conv3-256

max
Com3-512 | comv3-312 | conv3312 Comv3-512 | conva-312
comv3-512 | conv3-512 | conv3-512 conv3-512 | conv3-512
conv3-512 3512
conv3-512
max

Coma-312 | conv3312 | conv Comv3-512 | conva312
comv3-512 | conv3-512 | conv3-512 conv3-512 | conv3-512
conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

Soft-max

2014

VGG Network (Simonyan and Zisserman, 2015), 2nd place in ILSVRC

42

Filter
concatenation

_—7

3x3 i 5x5 i 1x1

x1 q [} [} L)

ﬂnions 1x1 convolutions 3x3 max pooling

Previous layer

GoogleNet (Szegedy et al., 2014), winner of ILSVRC 2014

43

A4

weight layer

F(x) 1 relu

weight layer

H(x) =F(x)+x
relu

identity
X

Deep ResNet (He et al., 2015), winner of ILSVRC 2015

44

Recurrent neural networks

Outline

45

Predicting temporal data

So far, the models we have discussed have been applicable to
independent inputs z(), .. ., z(™)

In practice, we often want to predict a sequence of outputs, given a
sequence of inputs

Just predicting each output independently would miss crucial
information

Many examples: time series forecasting, sentence labeling, part of
speech tagging, etc

46

Basic recurrent neural network

Recurrent neural network, maintain hidden state over time, hidden
state is function of current input and previous hidden state

Wzy I/V:y Wzy

W..

W

e O
— v()()
IS
=
™0
=

—

zg(t) fl(2z T) + szz (t=1) + bl)
90 = f(Weyz ™ + bo)

47

Training recurrent neural networks

Most common for training recurrent neural networks is to “unroll”
prediction on some dataset z(1:7), y(1:T) minimize the loss
function

minimize 250, 4@
Wul, V%/zz ,II%sz tz:; (y Y)

Equivalent to backpropagation in a “deep” network where each layer
is constrained to have the same weights

Some issues: initializing first hidden layer (just have a hidden
“previous” layer of all zeros), how long of sequence (pick something
big, say 100)

48

Long short term memory (LSTM) newtorks

Trouble with plain RNNs is that it is difficult to capture long-term
dependencies (e.g., if we see a “(” character, we expect a “)” to
follow at some point)

One solution, long short term memory (LSTM) network (Hochreiter
and Schmidhuber, 1997), has more complex structure that
specifically encodes memory and pass-through features, able to
capture these longer dependences

iy = tanh(Wazy + Whilyi—1 + bi)

(
sigm(Wijay + Whjhe—1 + b5)
(

ft sigm(Wyezy + Whehy—1 + br)
o = tanh(Wyowy + Whohi—1 + bo)
¢ = 10 fit+i O

h: = tanh(c:) © o

LSTM architecture, figure/equations from (Jozefowicz et al., 2015) °

Some example settings

“Char-RNN” network predicts text one character at a time

target chars: ‘e” Ak “r “o"

0 05 X 02
22 03 05 A5
output tayer (EEHR 1.0 19 01
41 12 -4 22
I fw_ny
03 10 0.1 03
hidden layer | 0.1 |— | 0.3 |— | -05 [="1 0o
09 01 03 07
I TWﬁxh
1 0 0 0
0 1 0 0
input layer | 9 d : g
0 0 0 0
input chars: “h” “e" I I

Figure and subsequent example from Karpathy, 2015,
http://karpathy.github.io0/2015/05/21/rnn-effectiveness/

50

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Char-RNN trained character-by-character level on the Linux source
code

Some random source code sampled from the resulting model
/%

* Increment the size file of the mew incorrect UI_FILTER group information
* of the size generatively.
*/
static int indicate_policy(void)
{
int error;
if (fd == MARN_EPT) {
/*
* The kernel blank will coeld it to userspace
*/
if (ss->segment < mem_total)
unblock_graph_and_set_blocked() ;

else
ret = 1;
goto bail;

}

segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;

5

Combining convolution and recurrent networks

Multimodal RNN (Karpathy and Fei-Fei, 2015, though many other
similar ideas), uses the output of a convolution neural network as the
first input to the hidden units of an RNN

“straw” “hat” END

START “straw” “hat”

Some resulting image captions

“man in black shirtis playing “construction worker inorange “two young girls are playing with "boy is doing backflip on
quitar” safety vest is working on road lego toy. wakeboard 50

Deep reinforcement learning

Outline

53

Recall Q-learning setup

Q™ function encodes discounted sum of future rewards

Q* (s, a) gives value of being in state s, taking action a, and acting
optimally thereafter

Q-learning update: in state s, take action a, obtain rewards r and
end up in state s’

Q*(s, a) +— (1-a) Q*(s, a) + « <7“ + ’yrrgs}x Q*(y} a/)>

Q*(s,a) + a(r + 7 max Q*(s',a") — Q*(s, a))

54

Q-learning with function approximation

For large state and action spaces, we clearly can’t represent the
value function explicitly for each state/action pair

Leads to an equivalent update for Q-learning (and TD methods in
general) with function approximation

Given a @ function approximated by parameters 6, Qg* (s,0a),
Q-learning update becomes

=0+« <T+'ymz}x Qr(s',a) — Qi (s, a)> Vo Qi (s, a)

55

Deep Q-learning

Deep Q-learning: simply use a neural network (with continuous
output) to represent () (s, a), backprop as before to compute
gradients

Example: Google Deepmind DQN network used to learn to play
Atari games (Mnih et al., 2015)

¢

[
o
5ERED

56

	Introduction
	Machine learning with neural networks
	Training neural networks
	Convolutional neural networks
	Recurrent neural networks
	Deep reinforcement learning

