HOMEWORK 4
PROBABILISTIC GRAPHICAL MODELS AND INFERENCE

CMU 15-780: GRADUATE AI (SPRING 2016)
OUT: Feb 26, 2016
DUE: March 4, 2016 11:59pm

Instructions

Collaboration Policy

You may discuss assignments with other students as you work through them,
but writeups must be done alone. No downloading or copying of code or other
answers is allowed. If you use a string of at least 5 words from some source, you
must cite the source.

Submission

Please create a tar archive of your answers and submit to Homework 4 on auto-
lab. You should have two files in your archive: a completed factor_graph.py
for the programming portion, and a PDF for your answers to the written compo-
nent. Your completed functions will be autograded by running through several
test cases and their return values will be compared to the reference implemen-
tation.

You have 8 late days for homeworks over the semester, and can use at most 3
for one homework.

TAs

If you need help, the names beside the questions are the names of the TAs who
came up with them, and are more likely to be familiar with the topics.

1 Written [Wennie/Guillermo]

1.1 15 pts

Bayesian Networks Consider a Bayesian network given by the following stu-
dent example: A student’s grade depends not only on his intelligence but also on
the difficulty of the course, represented by a random variable X; whose domain
is Val(D) = {easy, hard}. The student asks his professor for a recommendation
letter. The professor is absentminded and never remembers the names of his
students. He can only look at the student’s grade and writes the letter for him
based on that information alone. The quality of the letter is a random variable
L, whose domain is Val(L) = {strong, weak}. The quality of the letter depends
stochastically on the grade. (It can vary depending on how stressed the profes-
sor is and the quality of the coffee he had that morning). Therefore, we have
five random variables in this domain: the student’s intelligence X, the course
difficulty X, the grade X3, the student’s SAT score X, and the quality of the
recommendation letter X5. All the variables except X3 are binary-valued, and
X3 is ternary-valued.

p(Xi=1) p(Xp =1)
0.4){1 /Q?\ 0.3
X3 Xs I)(X4 = 1)
X | Xo | p(X3 =1) | p(X3 = 2) < @D 0 0.05
0] o0 0.4 0.3 1 0.8
0|1 0.08 0.02
110 0.25 0.7
1|1 0.3 0.2 <@ X3 | p(Xs = 1)
~ 0 0.9
1 0.6
2 0.01

(a) [7pts] Write this Bayesian network as a factor graph. What independences
are captured by the Bayesian network form which are not implied by the factor
graph structure itself?

(b) [8pts] The Bayes net as provided can be thought of as providing an order-
ing to the variables: difficulty, intelligence, grade, SAT, letter. Suppose instead
we wanted to order the variables: letter, SAT, grade, difficulty, intelligence.
Write a Bayesian network over these same variables that is consistent with this
ordering (i.e., so that the parents of each node must come before the node it-
self) and preserves the same joint probability distribution as the original. Do
not worry about explicitly writing out the tables. Aim to get correct shape of
the bayesian network and get rid of any unnecessary links.

For example, consider the network X; — X3 < X5. We want to reorder the
network with list X3, X5, X;7. The resulting reordered network is X; < X3 —
X5 and X5 — X;. We know that the product of the probability tables is the
joint distribution via the chain rule. We can’t simplify any of these tables using
conditional independencies in the original bayesian network so we don’t remove
any links. Notice that we don’t just reverse the edges.

Hint: Use the chain rule.

2 Programming [Wennie/Guillermo]

2.1 30 points

Variable elimination in factor graphs For this problem you will implement
the sum product variable elimination algorithm to perform inference in a factor
graph. In particular, you will implement the following function, in the included
file factor_graph.py:

def marginal_inference(factors, variables, elim_order=None):

This function takes as input a list of factors, described via the Factor class in
the factor_graph.py (more details on this shortly), a list of variable names
for which we want to produce the marginal distribution, and (optionally) a
variable ordering which consists of the order which to eliminate all the remaining
variables.

The basis for the factor graph representation we will use is the Factor class
included in the factor_graph.py file. You won’t have to edit this class at all,
or even necessarily understand all the code in this class, but you will need to
understand how to use the class. Each Factor object contains 1) a Python
dictionary containing all the variables for that Factor, along with their possible
values, and 2) a set of factor values for all possible assignments to these variables.
Let’s look at a simple example: if we initialize Factor by the following:

f = Factor({"x1":[0,1], "x2":[0,1], "x3":[0,1,2]})

this will create a factor of three variables, “x1”, “x2”, and “x3,” where the first
two can take on values 0 or 1, and the third can take on values 0, 1, or 2 (note
that in this problem, unlike the lecture notes, variables can take on more than
two values, but this really introduces no added complexity). Note that there
is no requirement that the list of possible values for each factor be numbers:
indeed, for the real-world Bayes net example, these will typically be lists of
strings, but this should not change your code at all. If you want to access this
list of variables at any point, use the class member f.variables.

To access (either get or set) the particular factor value corresponding to some
assignment of its variables, we can use the call

f{"x1":0, "x2":1, "x3":1}] # gets the corresponding value
f[{"x1":0, "x2":1, "x3":1}] = 0.1 # sets the corresponding value

(this will be the factor value when x1 equals 0, x2 equals 1 and x3 equals 1).
For convenience (if you use this properly correctly, it can make your factor
operations a bit more compact), if you use the get or set notation above, but
with any additional variables that are not in the factor, the function just ignores
these extra variables

same as f[{"x1":0, "x2":1, "x3":1}]
f[{"x1":0, "x2":1, "x3":1, "x4":1}]

This does not work if you try to get or set the factor with fewer than all the
variables specified (this will return an error).

If you want to get a list of all possible assignments to the variables, use f . inputs();
for example, in the above setting

for e in f.inputs():
print str(e) + " =" + str(fle])

will output:

{’x2’: 0, ’x3’: 0, ’x1°: 0} =0
{’x27: 1, ’x3’: 2, ’x1’: 0} =0
{’x2’: 0, ’x3’: 1, ’x1’: 1} =0
{’x2’: 0, ’x3’: 2, ’x1’: 0} =0
{’x2’: 1, ’x3’: 0, ’x1’: 0} =0
{’x2°: 1, ’x3’: 1, ’x1°: 1} =0
{’x2°: 1, ’x3’: 1, ’x1°: 0} =0
{’x27: 1, ’x3’: 2, ’x1’: 1} =0
{’x2’: 0, ’x3’: 1, ’x1’: 0} =0
{’x2’: 1, ’x3’: 0, ’x1’: 1} =0
{’x2’: 0, ’x3’: 2, ’x1’: 1} =0
{’x2’: 0, ’x3’: 0, ’x1°: 1} =0

since factors are initialized to have all zero values by default (or you can specify
the default value as a second input to the Factor initialization). Don’t worry
about the ordering of the assignments here, a side effect of the dictionary rep-
resentation is that the factors aren’t stored in any particular order. You can
also access a list of all the values themselves (in the same order as f.inputs())
using f.values().

Using this representation, a factor graph (and hence a probability distribution
over all the variables) can be represented using just a list of factors. For exam-

ple,

f1 = Factor({"x1":[0,1], "x2":[0,1]1})
£2 = Factor({"x2":[0,1], "x3":[0,1,2]})
£3 = Factor({"x3":[0,1,2], "x4":[1,2]})
fg = [f1,£2,£3]

Then fg implicitly represents a factor graph. This is possible (i.e., defining this
distribution without ever explicitly defining a graph structure or the correspond
edges) because each factor itself contains a list of all its variables, so we could
immediately construct the graph given any such list of factors.

Using this representation, there are two parts to this problem:
1. Implement the aforementioned
def marginal_inference(factors, variables, elim_order=None):

assuming that it will be called with a valid elimination ordering provided
in elim_order. Using the terminology described so far, we can define the
inputs and outputs of this function more concretely:

e factors will contain a list of Factor objects, representing the factor
graph for the distribution. For example, this would be the fg variable
from the code above.

e variables contains a list of variables that we want to find the marginal
distribution of. For example, this could be ["x1","x4"], indicating
that we want to use inference to compute the marginal distribution
p(z1,24) (ie., summing out x2 and x3).

e elim order contains a list of variables equal to the set differenced of
all the variables in factors minus all the variables in variables, or-
dered by the order we want to eliminate them in using the sum prod-
uct algorithm. For example, given the two settings above, elim_order
could be equal to ["x2","x3"], indicating that we want to eliminate
x2 first and then x3

e As its return value, this function should return a single factor, repre-
senting the marginal probability over the variables in variables. For
example, for all the cases above it should return a factor of the form
Factor("x1":[0,1],"x4":[1,2]) where the elements of this factor
correspond to the probabilities for each assignment of these variables
(since they are probabilities, the sum of all the factors must be one).

To do this, you will want to implement the sum product algorithm de-
scribed on page 37 of the probabilistic inference notes. Your implementa-
tion will be a lot easier if you also implement the functions

def factor_product(f1l,f2):
and
def factor_sum(fl,v):

given in the code skeleton. The functions respectively would form the
product of two factors (which you can use to then compute the product
of several factors) and would sum (marginalize) out a variable from a
particular factor.

Some test cases for this code, including a test case on a Bayesian network
used for patient alarm systems in a hospital, are included with the problem
code.

. Implement the
def marginal_inference(factors, variables, elim_order=None):

using all the same notation as before, but now in the case where None is
based as elim_order. In this case, you will need to determine the ordering
yourself, which will consist of some order for eliminating all the variables in
the factor graph except for those contained in variables. However, since
computing the optimal variable elimination ordering in a factor graph is
NP hard, you'll need to use a heuristic.

You are welcome to try whatever heuristics for ordering that you want,
but a method that will work for all the test cases we will give you is the
“minimum neighbors” heuristic. Two variables x and y are defined to be
neighbors if there is some factor in the factor graph that contains them
both. Note that is not quite the same as the typical notion of neighbors
in a graph, since all the direct neighbors of a variable in the factor graph
would be factors; this is actually equivalent to a “two step” neighbors
in the factor graph itself. At each step of variable elimination, choose
to eliminate the variable (not in variables) that has the fewest number
of neighbors. If you do this incorrectly, variable elimination should still
eventually give you the right answer, but it will most likely take too long
for the test cases we give.

	Written [Wennie/Guillermo]
	15 pts

	Programming [Wennie/Guillermo]
	30 points

