From: “Analytic Methods in the Analysis and Design
of Number-Theoretic Algorithms”,
by Eric Bach, MIT Press, 1984

Chapter 2

THE GENERATION OF RANDOM FACTORIZATIONS

2.0 Introduction

This chapter discusses a new application for prime testing: the generation of "pre-
factored” random numbers. To fix ideas, consider the following situation: Let N be
a fixed positive number, and suppose that we want an integer x uniformly distri-
buted on the interval N/2 <x = N; but insiead of the usual binary notation, we

wanl to output the prime factors of x.

This can be done by assembling "random” primes, but it is not clear with what
distribution the primes should be selected, nor how to generate primes with a given

distribution. Most of this chapter will deal with these two questions. However, the

resulting method is easily sketched:

The algorithm selects a prime-power factor g of x whose length is nearly uni-
form between O and logN, then recursively selects the factors of a number y
between N/2g and N/g and sets x = y-q. This picks x with a known bias; 1o
correct this, it flips a (very unfair) coin to decide whether to output x or repeat the
whole process.

1 will show that the resulting distribution is uniform, and that this is a fast
algorithm; it requires O(logN) primality tests on the average. This can be pul in
another form, using the results of chapter 1. If the ERH is true, then expected time
to generate a factored random number of length 4 is a bounded by a polynomial in

k.

26

The method also behaves well if it uses only a probabilistic prime test that can
err on composite input. In this case, the distribution of correctly factored numbers
is still uniform, and the possibility of producing an incompletely factored output can
in practice be disregarded.

The rest of this chapter is organized as follows. Section 2.1 presents a heuris-
tic derivation of the algorithm. Section 2.2 discusses some ideas of probability
theory; they are used in the algorithm, described in sections 2.3 and 2.4. The last
three sections discuss the running time of the method, based on an estimate of the
average number of prime ftests found in section 2.5. The last two sections bound the
expected number of single-precision operations, assuming perfect and imperfect

prime testing, respectively.

2.1 A Method that Almost Works

Later 1 will present a detailed algorithm; to understand it, it is best to first think

heuristically and ignore certain difficulties.

First, what is a "random factor” of a number? Consider the following picture:
for each number of length logN, write down its prime factorization. If the factori-
zations are arranged one per line, and given in binary notation, the picture will look

something like this:

10001...0001 101010..011 1000...01 101..101
10001...0001 101010..011 1000...01 101..111
10001...0001 101010..011 1000...01 111..101
10001...0001 101010..011 1000...01 111..111

27

Imagine throwing a dart at this matrix, and picking p if the dart lands in the
binary representation of p. Then p occurs in about I/p of the numbers, and ignor-
ing repeated factors, the dart will land on p in each of them about logp /log N of the
time.

This suggests selecting the first factor p with probability about logp/plogh,
and using approximations given by the prime number theorem, this has the effect®
of making the length of p uniformly distributed in (0,logN).

Thus, to choose x uniformly with N/2 <x = N, one might proceed as fol-
lows: Select a length A uniformly from (0,logN) and pick the largest prime p with
logp = A. Then recursively select the rest of x, call it y, from (N/2p,N/p], and
announce that x is p times the prime factorization of y.

Blithely assuming that the distribution of v is uniform, the probability of select-
ing x is about

logp 1 _
plogN Nip — N/2p

pla

This is 2/N, the correct probability for a uniform distribution, times a bias factor of

This bias should be close to 1, and it is, provided that x doesn't have too many
repeated prime factors.

Thus one suspects that this method is almost right, but a closer look at the
algorithm reveals the complications listed below.
I) Merely picking the biggest prime less than some given value won 't do; for one

thing, the first member of a twin prime pair will be chosen less frequently than

3 If p <N is chosen with probability log p/plogN, then logp /logN converges in
distribution as N-= to a uniform (0, 1) random variable; see [37].

28

the second. The resulting method must be insensitive to these local irregulari-
ties.

2) The bias factor is quite small for certain x, say powers of 2. This problem
does not go away unless prime power factors are also chosen in the first step.

3) At the end of the algorithm, x will have been chosen with a certain bias, but
the recursion will not work unless all x's are equally likely. The odds must be
changed somehow to make the eventual output uniform.

4) It was claimed that v, the rest of x, could be selected from (N/2p,N/p| with
probability 2p/N. However, it is by no means certain, and in general not true,
that there are N/2p integers in this range.

Dealing with these problems requires some machinery that will be developed in

the next three sections.

2.2 Doctoring the Odds
This section tells how to use one distribution to simulate another, using only a little
information about the odds, a source of uniform (0,1) random numbers, and some
extra time.

Let {x;.....x,} be a finite set. Say that X' has a finite distribution with odds
(Py- .- . .pp) if X=x; with probability p; / £p;. The odds of a distribution are
only defined up to a multiplicative constant; this conforms 1o ordinary usage, in
which odds of 2:1 and 10:5 are regarded as identical.

To see how 1o wrn one distribution into another, consider an example. Sup-
pose one has a coin that is biased in favor of heads with odds of 2:1, and wishes to

make it fair. This can be done by the following trick. Flip the coin. If it comes up

29

tails, say "tails”; if it comes up heads, say "heads” with probability 1/2, and with
probability 1/2 repeat the process.

The stopping time can be analyzed by the following "renewal” argument. The
process musi flip the biased coin once no matter what happens, and afier this first
step, it has one chance in three of being born again. Thus the expected stopping
time E(T) must satisfy E(T)= 1+ E(TYV3, so E(T)=32. More generally, T=k
with probability (Z3)(1/3)*1; this is a geometric distribution with expected value
3/2. At each reincarnation, the process has no memory of its past, so the stopping
time and the ultimate result are independent.

Clearly this example is silly, as it requires a fair coin to produce the effect of
one, but it points out some important features of the method.

a) Decisions are only made locally; after getting, say, heads, a decision can be
made without knowing the other possible outcomes or even their total number.

b) Only the odds matter; knowing only the relative probability of each outcome is
sufficient for undoing the bias.

The general version of this is called the "acceptance-rejection” method (|38)),
and works as follows: we are given odds (p;..... p,) but want odds
(g1.....4q,). Assuming that ¢,=<p;, the recipe is: select X from the original dis-
tribution; if X = x;, then output x; with probability g;/p;, and repeat with probabil-

ity | — g;/p;.

THEOREM D. The above process yields a finite distribution with odds
(g5 o q,). Moreover, the stopping time is distributed geometrically
with expected value Zp; / Zg; ; it and the eventual output are indepen-

dent.

30

PROOF: Generalize the earlier discussion.

This idea is at heart of the method, in two ways:

To select a factor with approximately uniform length, the algorithm chooses
prime powers g with probability proportional to a certain A,. To do this, it first
picks integers g in the following way: 2 and 3 each appear with (relative) probability
1/2, 4, 5, 6, and 7 each appear with probability /4, and so on. Since A,<l/qg,
acceptance-rejection is used twice: first to produce the distribution A, and then to
throw away g s that are not prime powers.

At the top level, the algorithm generates x, N/2 < x = N, with probability pro-
portional to logx. It accepts x with probability logN/2/logx, producing a uniform

distribution.

2.3 A Factor Generation Procedure
This section presents and describes a factor selection process.

For real numbers a and b, let #(a,b] denote the number of integers x,
a<x=p. If |x]| denotes the greatest integer =y, then #(a/2,a|=|(a+ 1v2]; this
implies the frequently-used estimate

(a—1¥2 = Kla/2,a] = (a+ 1)V2. (11}

For prime powers g=p”, and inlegers N, let

logp #(N/2q.N/q] . -
logN N

In terms of the above notation, the method is the following.

Anlg) =

k]|

PROCESS F: Faclor generation.

(*) Select a random integer j with lﬂ;{log;h’
Let g=2/+r, where r, 0=r <2/, is chosen at random.
Choose k from the Ufﬂ 1) distribution.
If g is a prime power, g=N, and A <A y(g)2
If not, go back to (*).

I
[nglq], output g.

THEOREM E. Process F almost surely halts; the number of times (*) is
reached has a geometric distribution whose expected value is O(logN). It
outputs a prime power g=p“, 2 < ¢ = N, with probability proportional
to A y(g). The running time and the output value are independent.

e i ine =i) s
PROOF: The first two steps select g with relative probability 2 IB’E"“. and since

ngzq]ﬁﬁtq} = %‘E = | for g=N, q is output with the stated probability. For

the running time estimate, it will suffice to show that £ A ,(q) is roughly a con-
g=N

stant. To do this I need two consequences of the prime number theorem (see, e.g.

I137] p. 65): Z logp ~ N and X logp/p ~ logN. Then
=N p=N

1
SANg) = SApp) = I 82y _logp 1
e S NP p=n2plogN =\ 2NlogN 2

The independence statement is a consequence of theorem D.

It was stated earlier that ¢’s length is roughly uniformly distributed. This
intition can be refined into the following precise statement: N-=, logg/logN con-
verges in distribution to a uniform (0, 1) random variable. This implies the follow-
ing: if

Fy(x) = Prig=x],
then Fy(x), Elog(N/q), and Elog?(N/q) are close to logx/logN, 1/2 logN, and
I/3 (logN ¥, respectively. The next three lemmas give upper bounds corresponding

