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Compression in the Real World

Ubiquitous usage. Examples:

— Data storage: file systems, large-scale storage
systems (e.g. cloud storage)

— Communication

— Media: Video, audio, images

— Data structures: Graphs, indexes

— Newer: Neural network compression
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Encoding/Decoding

“Message” refers to the data to be compressed

_Output
Message

Input
Message

Compressed,
Message

| \

The encoder and decoder need to understand

Encoder Decoder

common compressed format.
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Lossless vs. Lossy

Lossless: Input messag utput message
Lossy: Input message ~ Qutput message

Quality of Compression:

For Lossless? Jo
Runtime vs. Compression/:/s. Generality
~OMpressio

For Lossy?
Loss metric (in addition to above)
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How much can we compress?

Q: Can we (lossless) compress any kind of messages?

No!

For lossless compression, assuming all input messages are

valid, if one string is compressed, some other must expand.
TN

Q: So what we do need in order to be able to compress?
Can compress only if some messages are more likely than

other.
That is, there needs to be\bias in the probability distributlon.}

—
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Model vs. Coder

To compress we need a bias on the probability of
messages. The model determines this bias

—_—

Encoder
Messages N Probs. Cod Bits
» Mode » Coder —~—
4 —_— /} _— /\

Example models:

— Simple: Character counts, repeated strings
— Complex: Models of a human face , ~
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INFORMATION THEORY BASICS
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Information Theory

« Quantifies and investigates “information”

« Fundamental limits on representation and transmission of
information

— What's the minimum number of bits needed to represent
data? sevre 0°°\Ma

— What's the minimum number of bits needed to
communicate data? * cbmnrd Coding ¥

— What's the minimum number of bits needed to secure
data?
oy ety
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Information Theory

Claude E. Shannon
— Landmark 1948 paper: mathematical framework
— Proposed and solved key questions
— Gave birth to information theory

Reprinted with corrections from The Bell System Technical Jownal
Vol. 27, pp. 379-423, 623-656, July, October, 1948

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM and PPM which exchange
bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A
basis for such a theory is contained in the important papers of Nyquist' and Hartley? on this subject. In the
present paper we will extend the theory to include a number of new factors, in particular the effect of noise

\




Information Theory

In the context of compression:
An interface between modeling and coding

Entropy
— A measure of information content

Suppose a message can take n values from S = {s,...,s,}
with a probability distribution p(s). p(s) ,ps) P (sn)

—_—

One of the n values will be chosen.

P —_—

“How much choice” is involved? OR
“How much information is needed to convey the value chosen?
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Entropy

Q: Should it depend on the values {s,,...,5.,}?

(e.g., American names vs. European names)
No.

Q: Should it depend on p(s)?
Yes.

If P(s;)=1 and rest are all 07
No choice. Entropy =0

More the bias lower the entropy
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Entropy

Shannon (1948 paper) lists key properties that an entropy
function should satisfy and shows that “log” is the only
function.

Specifically, log ($)
—

Intuition for the log function:

 When p(s) is low, entropy should be high

* Suppose two independent messages are being picked then

entropy should add up - s ©
\ L i P

dCS() 6(57/)
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Entropy

For a set of messages S with probability p(s), S €S, the
self information of s is:

1
i(s)=log—— 05) = —log p(s)

Measured in bits if the log is base 2.

Entropy is the weighted average of self information.

1
H(S) = Z;ms) log— =
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Entropy Example

Binary random variable (i.e., taking two values)
with probability p and 1-p

Denoted as H,(p):
9 5@ 177

<draw>

Highest entropy when equiprobable
(true for n >2 as well)
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Entropy Example

P Lﬁ)

JRN R

/

p(S) =1.25,.25,25,.125,.125}
H(S)=3x.25log4+2x.125]og8 = 225

p(S) = {5,.125,125,.125,.125} / L

H(S)=.5log2+4x.125]log8 = 2

D(S) = @.0625, 0625, 0625, 0625} L

H(S)=.75log(4/3) +4x.0625log16=1.3

15-750 Page 21



Conditional Entropy

Conditional entropy: Information content based on a context

The conditional probability p(s|c) is the probability of sin a

context c.
'@’37 /f%( )

The conditional entropy is the weighted average of the
conditional self information

- |
H(S|C)= p(c
; ceC =
——
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Types of "sources’

Sources generate the messages (to be compressed)
Sources can be modelled in multiple ways

Independent and identically distributed (i.i.d) source
— Prob. of each msg is independent of the previous msg

Markov source

— message sequence follows a Markov model (specifically
Discrete Time Markov Chain, aka DTMC)
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Example of a Markov Chain
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Shannon’s experiment

Asked people to predict the next character given the whole
previous text. He used these as conditional probabilities to
estimate the entropy of the English Language.

The number of guesses required for right answer:

# ofguesses| 1 | 2 |3 |4 |5 |>5
Probability |.79 .08 |.03|.02 .02 .05
From the experiment
H(English) = .6 - 1.3
—=

In comparison, ASCII uses 7 bits, Unicode and other

representations use 8 or even higher

15-750

Page 28



PROBABILITY CODING
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Terminology

Communication (or a file) is broken up into pieces called
messages.

Each message come from a message set S = {sy,...,S}
with a probability distribution p(s). 7

MA A mapping from a message set tom

* eachof which is a string of bits

Message sequence. a sequence of MmesSsages
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Variable length codes and
Unique Decodability

A variable length code assigns a bit string (codeword) of
variable length to every message value

eg az 1, b - O//l,, d = 011

— .

What if you get the sequence of bits
011 ? abo og coa Ok od

Is itaba, ca, or, ad?

A uniquely decodable code is a variable length code in

which bit strings can always be uniquely decomposed into
its codewords.
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Prefix Codes

A prefix code is a variable length code in which no codeword
Is a prefix of another word.

6.9, a=0,b=110,c=111,d =10

—_—

—

All prefix codes are uniquely decodable
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Prefix Codes: as a tree

Prefix codes can be viewed as a binary tree with Os or 1s on
the edges and message values at the Ieaves
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Average Length

@ik”"’/l

For a code C with associated probabilities p(c) the average
length is defined as

I s DN
LO=Epona ML

c&C

[(c) =length of the codeword C | (a positive integer)

We say that a prefix code C is optimal if for all prefix codes
[o(C) <14(C)
=

—

-—
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Relationship to Entropy

Theorem (lower bound): For any probability distribution p(S)
with associated uniquely decodable code C,

H(S)<1,(C)

Theorem (upper bound): For any probability distribution p(S)
with associated optimal prefix code C,

L(O)<H(S)+1

=
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Kraft McMillan Inequality

Theorem (Kraft-McMillan): For any uniquely decodable code C,
— Q\(Q)

= =N RIOPY = 2 =\

c&C c eC

—

Conversely, for any set of lengths L such that = 27'<1

[EL

there is a prefix code C such that

I(c.)=1,G=1,..,| L)
e

We will use Kraft McMillan for proving the upper bound theorem.
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Proof of the Upper Bound (Part 1)

Sk s P

Assign each message a length:  (s5)= ﬂogfl/ p(S)j_‘
We then have — )
%zﬂ(s) :: Zz=ﬁ1og@p(s;)ﬂ

SES seS
é 2=10g(@/p(s)}
< Sz
=2 p(s)
s&S
=]

B
Then, by the converse part of Kraft-McMillfp)inequality there is
)

a prefix code with Ieﬂhs I(s). Z ;Z < )
fﬁ/”
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Proof of the Upper Bound (Part 2)

Now we can calculate the average length given I(s)
1,(8) = 2, p(9)l(s)
- Zp(s) ﬁog@/msﬂ
£ 2. p(s)-(141og(1/ p(s)))
= ??/_;r

= mZp(s) log(1/ p(s))
= 1+ H (S)

/
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Another property of optimal codes

Theorem: If C is an optimal prefix code for the probabilities

{51, E)n}, then p; > p; implies I(¢;) < I(c;) S. < <
k2 .

S'J = QJ
Proof: (by contradiction)
Assume [(c;) > I(c;). Consider switching codes c; and c;.

If |, is the average length of the original code, the length of the
new code is

l, =1, +p,(I(c)=U(c;) + p,(I(c;) - I(c))
=1, +(p; = p)U(c;) = l(c)))
<l

This is a contradiction since 1, is not optimal
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