
1

Carnegie Mellon
CS745: Memory Hierarchy Optimizations Phillip B. Gibbons

Lecture 18:
Memory Hierarchy Optimizations &

Locality Analysis

[ALSU 7.4.2-7.4.3, 11.2-11.5]
CS745: Memory Hierarchy Optimizations -2-

Carnegie Mellon

Caches: A Quick Review
• How do they work?
• Why do we care about them?
• What are typical configurations today?
• What are some important cache parameters that will affect performance?

CS745: Memory Hierarchy Optimizations -3-
Carnegie Mellon

Optimizing Cache Performance

• Things to enhance:
• temporal locality
• spatial locality

• Things to minimize:
• conflicts (i.e. bad replacement decisions)

What can the compiler do to help?

CS745: Memory Hierarchy Optimizations -4-
Carnegie Mellon

Two Things We Can Manipulate

• Time:
• When is an object accessed?

• Space:
• Where does an object exist in the address space?

How do we exploit these two levers?

2

CS745: Memory Hierarchy Optimizations -5-
Carnegie Mellon

Time: Reordering Computation
• What makes it difficult to know when an object is accessed?
• How can we predict a better time to access it?

• What information is needed?
• How do we know that this would be safe?

CS745: Memory Hierarchy Optimizations -6-
Carnegie Mellon

Space: Changing Data Layout

• What do we know about an object’s location?
• scalars, structures, pointer-based data structures, arrays, code, etc.

• How can we tell what a better layout would be?
• how many can we create?

• To what extent can we safely alter the layout?

CS745: Memory Hierarchy Optimizations -7-
Carnegie Mellon

Types of Objects to Consider

• Scalars
• Structures & Pointers
• Arrays

CS745: Memory Hierarchy Optimizations -8-
Carnegie Mellon

Scalars

• Locals
• Globals
• Procedure arguments
• Is cache performance a concern here?
• If so, what can be done?

int x;
double y;
foo(int a){

int i;
…
x = a*i;
…

}

3

CS745: Memory Hierarchy Optimizations -9-
Carnegie Mellon

Structures and Pointers

• What can we do here?
• within a node
• across nodes

• What limits the compiler’s ability to optimize here?

struct {
int count;
double velocity;
double inertia;
struct node *neighbors[N];

} node;
Example: Can rearrange field order to improve cache performance

CS745: Memory Hierarchy Optimizations -10-
Carnegie Mellon

Arrays / Matrices

• usually accessed within loops nests
• makes it easy to understand “time”

• what we know about array element addresses:
• start of array?
• relative position within array

double A[N][N], B[N][N];
…
for i = 0 to N-1

for j = 0 to N-1
A[i][j] = B[j][i];

CS745: Memory Hierarchy Optimizations -11-
Carnegie Mellon

Handy Representation: “Iteration Space”

• each position represents an iteration (not an array element)

for i = 0 to N-1
for j = 0 to N-1

A[i][j] = B[j][i];

i

j

CS745: Memory Hierarchy Optimizations -12-
Carnegie Mellon

Visitation Order in Iteration Space

• Note: iteration space data space

for i = 0 to N-1
for j = 0 to N-1

A[i][j] = B[j][i];

i

j

4

CS745: Memory Hierarchy Optimizations -13-
Carnegie Mellon

When Do Cache Misses Occur?
for i = 0 to N-1

for j = 0 to N-1
A[i][j] = B[j][i];

A B

Assume row major order, N large, 2 elements per cache line

Hit
Miss

i

j

i

j

CS745: Memory Hierarchy Optimizations -14-
Carnegie Mellon

When Do Cache Misses Occur?

for i = 0 to N-1
for j = 0 to N-1

A[i+j][0] = i*j;
Hit
Miss

i

j
Row major layout of A:A[0][0] A[0][1]…A[0][N-1] A[1][0]…A[1][N-1]…A[2N-2][0]…A[2N-2][N-1]

CS745: Memory Hierarchy Optimizations -15-
Carnegie Mellon

Optimizing the Cache Behavior of Array Accesses
• We need to answer the following questions:

• when do cache misses occur?
• use “locality analysis”

• can we change the order of the iterations (or possibly data layout) to produce better behavior?
• evaluate the cost of various alternatives

• does the new ordering/layout still produce correct results?
• use “dependence analysis”

CS745: Memory Hierarchy Optimizations -16-
Carnegie Mellon

Examples of Loop Transformations
• Loop Interchange
• Cache Blocking
• Skewing: iterate thru iteration space in the loops at an angle
• Loop Reversal: execute iterations in a loop in reverse order
• …

(we will briefly discuss the first two;see ALSU 11.7.8 for others)

5

CS745: Memory Hierarchy Optimizations -17-
Carnegie Mellon

Loop Interchange

• (assuming 2 elements/cache line & N is large relative to cache size)

for i = 0 to N-1
for j = 0 to N-1

A[j][i] = i*j;

i

j

Hit
Miss

j

i

for j = 0 to N-1
for i = 0 to N-1

A[j][i] = i*j;

CS745: Memory Hierarchy Optimizations -18-
Carnegie Mellon

Cache Blocking (aka “Tiling”)

now we can exploit temporal locality

for i = 0 to N-1
for j = 0 to N-1

f(A[i],A[j]);

for JJ = 0 to N-1 by L
for i = 0 to N-1

for j = JJ to max(N-1,JJ+L-1)
f(A[i],A[j]);

i

j

i

j

A[i] A[j]
i

j

i

j

A[i] A[j]

CS745: Memory Hierarchy Optimizations -19-
Carnegie Mellon

Impact on Visitation Order in Iteration Space

i

j

for i = 0 to N-1
for j = 0 to N-1

f(A[i],A[j]);

for JJ = 0 to N-1 by L
for i = 0 to N-1

for j = JJ to max(N-1,JJ+L-1)
f(A[i],A[j]);

i

j
CS745: Memory Hierarchy Optimizations -20-

Carnegie Mellon

Cache Blocking in Two Dimensions

• brings square sub-blocks of matrix “b” into the cache
• completely uses them up before moving on
• reduces the number of misses from or to only (C=cache size, L=line size)

for i = 0 to N-1
for j = 0 to N-1
for k = 0 to N-1
c[i,k] += a[i,j]*b[j,k];

for JJ = 0 to N-1 by B
for KK = 0 to N-1 by B
for i = 0 to N-1
for j = JJ to max(N-1,JJ+B-1)
for k = KK to max(N-1,KK+B-1)
c[i,k] += a[i,j]*b[j,k];

6

CS745: Memory Hierarchy Optimizations -21-
Carnegie Mellon

Predicting Cache Behavior through “Locality Analysis”
• Definitions:

• Reuse:
• accessing a location that has been accessed in the past

• Locality:
• accessing a location that is now found in the cache

• Key Insights
• Locality only occurs when there is reuse!
• BUT, reuse does not necessarily result in locality.

• why not?

CS745: Memory Hierarchy Optimizations -22-
Carnegie Mellon

Steps in Locality Analysis
1. Find data reuse

• if caches were infinitely large, we would be finished
2. Determine “localized iteration space”

• set of inner loops where the data accessed by an iteration is expected to fit within the cache
3. Find data locality:

• reuse localized iteration space locality

CS745: Memory Hierarchy Optimizations -23-
Carnegie Mellon

Types of Data Reuse/Locality
for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0]; Hit

Miss

i

j

A[i][j]

Spatial

i

j

B[j+1][0]

Temporal

i

j

B[j][0]

Group
(assume 2 elements per cache line)

CS745: Memory Hierarchy Optimizations -24-
Carnegie Mellon

Reuse Analysis: Representation

• Map n loop indices into d array indices via array indexing function:

for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

7

CS745: Memory Hierarchy Optimizations -25-
Carnegie Mellon

• Temporal reuse occurs between iterations and whenever:

• Rather than worrying about individual values of and , we say that reuse occurs along direction vector when:

• Solution: compute the nullspace of H

Finding Temporal Reuse

CS745: Memory Hierarchy Optimizations -26-
Carnegie Mellon

Temporal Reuse Example

• Reuse between iterations (i1,j1) and (i2,j2) whenever:

• True whenever j1 = j2, and regardless of the difference between i1 and i2.• i.e. whenever the difference lies along the nullspace of , which is span{(1,0)} (i.e. the outer loop).

for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

CS745: Memory Hierarchy Optimizations -27-
Carnegie Mellon

More Complicated Example

• Nullspace of = span{(1,-1)}, i.e. when Δ = −Δ .

for i = 0 to N-1
for j = 0 to N-1

A[i+j][0] = i*j;
Hit
Miss

i

j

CS745: Memory Hierarchy Optimizations -28-
Carnegie Mellon

Computing Spatial Reuse
• Assume two array elements share the same cache line iffthey differ only in the last dimension

• E.g., share the same row in a 2-dimensional array
• Why is this a reasonable approximation?
• What are its limitations?

• Replace last row of H with zeros, creating Hs
• Find the nullspace of Hs

• Result: vector along which we access the same row

row major order
May jump around too much within row

8

CS745: Memory Hierarchy Optimizations -29-
Carnegie Mellon

Computing Spatial Reuse: Example

• Hs =
• Nullspace of Hs = span{(0,1)}, i.e., the inner loop• access same row of A[i][j] along inner loop

for i = 0 to 2
for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];

i

j

Hit
Miss

CS745: Memory Hierarchy Optimizations -30-
Carnegie Mellon

Group Reuse (reuse from different static accesses)

• Limit the analysis to consider only accesses with same H
• i.e., index expressions that differ only in their constant terms

• Determine when access same location (temporal) or same row (spatial)
• Only the “leading reference” suffers the bulk of the cache misses

for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0]; H =

i

j

B[j][0]
i

j

B[j+1][0]

CS745: Memory Hierarchy Optimizations -31-
Carnegie Mellon

Localized Iteration Space
• Given finite cache, when does reuse result in locality?

• Localized if accesses less data than effective cache size

for i = 0 to 2
for j = 0 to 8

A[i][j] = B[j][0] + B[j+1][0];
for i = 0 to 2
for j = 0 to 1000000

A[i][j] = B[j][0] + B[j+1][0];
i

j
B[j+1][0]

i

j
B[j+1][0]

Localized: both i and j loops Localized: j loop only

CS745: Memory Hierarchy Optimizations -32-
Carnegie Mellon

Computing Locality
• Reuse Vector Space Localized Vector Space Locality Vector Space
• Example:

• If both loops are localized:• span{(1,0)} span{(1,0),(0,1)} span{(1,0)}• i.e. temporal reuse does result in temporal locality
• If only the innermost loop is localized:• span{(1,0)} span{(0,1)} span{}• i.e. no temporal locality

for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

