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Introduction

• Affordances are where we want to be

• Kinematics are where we are

• How do we get from basic kinematics to 
actually doing something?
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Introduction

• How do we get from basic kinematics to 
actually doing something?

• Configuration Space vs. Work Space

• Constraints

• Form Closure vs. Force Closure

• Grasp Analysis (Reuleaux’s Method)

• Path Planning

• Cspace, visibility graph, best first, RRT
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Configuration Space
vs. Work Space

• Consider a 2-link arm, with joint constraints:
0° <θ0 < 90° ,    -90° <θ1 < 90°
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Configuration Space: robot’s internal 
state space (e.g. joint angles)

Work Space: set of all possible 
end-effector positions
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Constraints

• Constraints can be your friend!

• Upside: Use the environment and the object 
itself to your advantage.

• Downside: Requires planning and accurate 
modeling

• Example: Part Orientation

• Can position/orient an ‘L’ shaped part with 
unknown initial configuration using nothing 
more than an actuated tray — no sensors!
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Fujimori, T., Development of Flexible Assembly System “SMART”
Video of Sony SMART Cell demo system by Wes Huang
CMU Manipulation Lab

• Example: Part Orientation

Constraints Are Your Friend
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Constraints Are Your Friend

• Example: Throwing (Kevin Lynch)
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A Turn and Two Topples
Tom A. Scharfeld
Kevin M. Lynch
December 2, 1998

Constraints Are Your Friend

• 2 DOF Arm over a conveyor belt (2JOC)
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Pingle, K., Paul, R., Bolles, R., "Programmable 
Assembly, Three Short Examples," Film,
Stanford Artificial Intelligence Laboratory, 
October 1974.

Constraints Are Your Friend

• Example: Hinge Assembly
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Constraint Taxonomy
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• Bilateral - expressed by equality (e.g. y = 0)

• Unilateral - expressed by inequality (e.g.  y > 0)

• Scleronomic - independent of time (static)

• Rheonomic - changes over time (e.g. θ=2πt)

• Holonomic - all constraints are independent 
of rate of change and bilateral (direct mapping 
between configuration space and work space)
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Holonomic vs. Non-Holonomic
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• Holonomic: robotic arms, unsteered mobile 
robots, omni-directional mobile robots

• can define configuration space such that 
returning to a configuration point implies 
returning to consistent point in work space

• Non-Holonomic: commonly, mobile robots 
with constraints on their instantaneous 
motion, e.g. unicycles, steered carts 
(Ackerman steering) can’t go sideways
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Grasping

• What does it mean to “hold” something?

• Form closure: object is “secure” — can’t move 
without moving a contact point

• Force closure: can apply any desired force

• Not necessarily the same thing — depends 
on your friction model (next lecture)
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No friction:
Form closure, but 
no force closure

With friction:
Force closure, but no 
form closure
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• Form closure is defined in increasing 
orders: position, velocity, acceleration, etc.

• Force closure does not have orders (you 
have it or you don’t)

• Frictionless force closure equates to
first-order (positional) form closure

Grasping
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Example grasp with both force 
closure and first-order form closure, 
regardless of frictional model
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• Original examples do not have force closure

• Left figure can be moved infinitesimally up or 
down, although cannot be in motion vertically 
(so it has second-order form closure)

Grasping
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With no friction,
neither example has 

force closure nor
first-order form closure
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Grasping

• What does it mean to “hold” something?

• Form closure: object is “secure” — can’t move 
without moving a contact point

• Force closure: can apply any desired force

• Equilibrium: can resist environmental forces 
(gravity)

• Stablity: how much variance from the 
environment can be tolerated and still 
maintain equilibrium
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Taxonomy of Contacts
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No contact

6 freedoms

Point contact
without friction

5 freedoms

Line contact

without friction

4 freedoms

Point contact

with friction

3 freedoms

Planar contact
without friction

3 freedoms

Soft fi nger

2 freedoms

Line contact
with friction

1 freedom

Planar contact
with friction

0 freedoms

Figure 4.8 - Mason, Mechanics Of Robotic Manipulation
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• For each constraint, divide the plane into 
areas which can hold positive or negative 
centers of rotation (IC’s - instantaneous 
centers)

Grasp Analysis:
Reuleaux’s Method
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• Intersect common regions

Grasp Analysis:
Reuleaux’s Method
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• Intersect common regions

Grasp Analysis:
Reuleaux’s Method
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• Intersect common regions

Grasp Analysis:
Reuleaux’s Method
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• Another example:

• Is this completely constrained?

Grasp Analysis:
Reuleaux’s Method
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• Another example:

• Can spin counter-clockwise around area in 
the middle — but not clockwise!

Grasp Analysis:
Reuleaux’s Method
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• How about now?

• Common intersections may indicate, but
do not guarantee, that rotation is possible

Grasp Analysis:
Reuleaux’s Method
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Grasp Analysis:
Reuleaux’s Method

• Reuleaux’s Method is good for humans, not 
so good for machines

• Doesn’t extend to three dimensions

• Analytical solution would require a lecture 
unto itself

• 16-741:  Mechanics of Manipulation

• Learn about screws, twists, wrenches, and 
moments
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• The Cspace Transform:  the set of 
configuration points around obstacles 
which would cause a collision

Motion Path Planning
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Robot

Obstacle

Cspace from 
defining origin 
at red point

Notice how the Cspace formed by 
defining the origin of the robot in its 

center (red dot and outline) is merely a 
translated version of the Cspace formed 
by placing the origin at one of the robot’s 

corners (blue dot and outline).

Cspace from 
defining origin 
at blue point
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• The Cspace Transform: the area around 
obstacles which would cause a collision 
with the robot
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Motion Path Planning
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Robot

Obstacle

Cspace

Figure 4.4 - Mason, Mechanics Of Robotic Manipulation
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• The Cspace Transform is not just for 
mobile robots’ outer hulls!

Motion Path Planning

26

Figure 4.5 - Mason, Mechanics Of Robotic Manipulation
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Motion Path Planning

• So, we know where we can’t go, but how 
do we avoid it?

• Approach 1: Visibility Graph

• Connect visible corners together, search the 
graph of connected edges
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qinit

qgoal

Figure 4.1 - Mason, Mechanics Of Robotic Manipulation
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Motion Path Planning:
Visibility Graph

• Great for 2 dimensions, but not for more

• Voronoi graphs are similar, and have been 
generalized to higher dimensions (Choset)

• Instead of a graph of tangents
between obstacles, use a
graph of the midpoints

• Fast search, safe path,
but suboptimal distance
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Voronoi Graph
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Motion Path Planning:
Best First Search (& Friends)

• Don’t explicitly solve all of Cspace before 
searching

• Basically, keep a priority queue of unevaluated 
nodes, sorted by “score” (e.g. distance to 
goal, or distance to goal plus distance so far)

• Each iteration, expand the current “best” node

• Choice of scoring heuristic (if you have a 
choice!) can make tradeoffs between search 
speed and optimality of solution found.
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Motion Path Planning:
Best First Search (& Friends)

30

S G



15-494 Cognitive Robotics04/02/07

Motion Path Planning:
Best First Search (& Friends)
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Motion Path Planning:
Best First Search (& Friends)
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Motion Path Planning:
Best First Search (& Friends)
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Motion Path Planning:
Rapidly Exploring Random Trees

• LaValle 1998

• Repeat K times:

• Pick a random configuration point P

• Find N, the closest tree node to P

• Add new node N', some distance Δ from N 

toward P

• Back to exploring entire configuration space?

• Not necessarily — bias the random target to 
pick the goal more often
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Motion Path Planning:
Rapidly Exploring Random Trees
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http://msl.cs.uiuc.edu/rrt/treemovie.gif

http://msl.cs.uiuc.edu/rrt/treemovie.gif
http://msl.cs.uiuc.edu/rrt/treemovie.gif
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Motion Path Planning:
Potential Fields
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• So far we’ve been assuming we already 
know the environment, and there aren’t 
other agents changing things around!

• Constant replanning is costly

• replan only when something is amiss

• replan only affected parts of existing plan 
(open research problem!)

• Or… don’t make a plan in the first place
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Motion Path Planning:
Potential Fields

34

• Define a function f mapping from a 
specified configuration to a score value

• e.g. distance to goal plus distance to obstacles

• Essentially just running heuristic from before:

• Evaluate each of the currently available moves

• Pick the one which maximizes score (or in 
example above, minimizes cost)
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Motion Path Planning:
Potential Fields
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• Downside: can get stuck in local minima

• Workaround:  follow edges (“bug” method)

• Upside: extremely quick and reactive

• Popular in robosoccer for navigating to ball

GS
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Motion Path Planning:
Summary

• Known Environment, Deterministic Actions

• Road Maps (Visibility, Voronoi), A*, RRT, brushfire

• Unknown Environment, Deterministic Actions

• Potential Field, “Bug”, D*

• Non-Deterministic and/or Unknown Environment

• MDP, POMDP
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Getting Back to the AIBO

• Under-actuated manipulators

• use the ground and other objects to help

• Don’t get hung up on grasp closure

• we’re not handling nuclear waste — 
equilibrium is enough for our purposes!
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Getting Back to the AIBO:
Where we want to go

• Develop larger library of motion primitives

• How to push a banana?  One leg?  Two legs?  
Head nuzzle?

• Each strategy has advantages, but have to 
quantify these capabilities so planners can 
choose among them

• Learn models of the environment from 
experience
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Next Time:

Dynamics!
Friction, Forces, and Control
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Thanks to:
16-741: Mechanics of Manipulation (Mason)

16-830: Planning, Execution, and Learning (Rizzi, Veloso)


