
Online Algorithms
� Introduction

So far in class, we have only considered the following algorithm design: we are given an input I , are

allowed to perform some computation, and then produce an output O. For many problems, this is an

appropriate framework. However, there are also many cases in the real world in which the algorithm

does not know the entire input yet, but still has to make partial decisions about the output. 

Algorithms  which  have  to  make  their  decisions  gradually  as  data  arrives  are  called  online  algo-

rithms. For instance, the cache should contain frequently accessed items. Unfortunately, we do not

know which items will be accessed. Other examples include: scheduling problems, traffic routing in

networks, and more.

We  define  the  competitive ratio  for  online  algorithms  to  capture  how much  worse  the  algorithm

does compared to one that knows about the future.

Definition.  Let  OPT  be  the  optimum  offline  algorithm (knowing  about  the  future),  and  ALG our

online algorithm. Let COPT and CALG denote the costs incurred by those two algorithms. The compet-

itive-ratio (CR) is defined as

CR =
CALG

COPT

ALG is c-competitive if there is a constant Α such that for any OPT and all inputs Σ

CALGHΣL £ c COPT HΣL + Α

� The Ski Rental Problem

Say you are just starting to go skiing.  Can either rent skis for $50 a day or buy them for $500. What

to do, buy or rent? 

Consider the worst case - you bought the skis right away, but then lost your interest

CR =
CALG

COPT

=
500

50
= 10

Another case, you decide to rent.  Then you decide to go skiing again, and again, and after a while

you realize you had rather bought skis right at the start.  
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CR =
CALG

COPT

=
d 50

500
=

d

10

Optimal strategy is: if you know you're going to end up skiing more than 10 days, you should buy

right at the beginning.  If you know you're going to go < 10 days, you should just rent.  But, what if

you don't know? 

In the  Ski  Rental  Problem,  we assume that  we are  going skiing  for  some number  d  of  days total.

Each day, we can either rent skis for R dollars, or buy them for B > R dollars. Once we have bought

the skis, we can use them for free forever afterwards.

Our  deterministic  algorithm can  be  described  as  “rent  for  d  days, then  buy”.  Executing  this  algo-

rithm  gives  us  a  cost  of  B + d R.  Next,  we  compute  the  cost  of  the  optimum  algorithm,  which  is
minHB, Hd + 1L RL

CR =
d R + B

MINHB, Hd + 1L RL = MAX 1 +
d R

B
, 1 +

B - R

Hd + 1L R

CR = 1 + MAX
d R

B
,

B - R

Hd + 1L R

The first term in the maximum is monotone increasing in d, and the second monotone decreasing in

d. Hence, the best ratio is achieved for the d for which the two terms are equal.

d R

B
=

B - R

Hd + 1L R

d Hd + 1L = -
B

R
1 -

B

R

Solving for d, yields

d + 1 =
B

R

This  suggests  that  the  optimum  online  algorithm  is  to  buy  on  day  number  B � R.  Substituting  the

value of d back, we obtain

CR = 1 +
d R

B
= 1 +

R

B

B

R
- 1 = 2 -

R

B

Claim: this strategy has the best possible competitive ratio for deterministic algorithms.

For the above example (rent for 9 days, then buy)
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CR = 2 -
R

B
= 2 -

50

500
= 1.9

What is we rented for 8 days, and then buy?

CR =
CALG

COPT

=
8 ´ 50 + 500

9 ´ 50
= 2

What is we rented for 10 days, and then buy?

CR =
CALG

COPT

=
10 ´ 50 + 500

500
= 2

Proof. 

Case 1: COPT = B i.e B £ Hd + 1L R or B - R £ d R

CR =
B + d R

MINHB, Hd + 1L RL =
B + d R

B
³

B + B - R

B
= 2 -

R

B

Case 2: COPT = Hd + 1L R i.e B ³ Hd + 1L R or 1Hd+1L R
³ 1

B

CR =
B + d R

Hd + 1L R
=

Hd + 1L R - R + B

Hd + 1L R
= 1 +

B - R

Hd + 1L R
³ 1 +

B - R

B
= 2 -

R

B

� The List Update Problem

Among  the  first  papers  to  study online  algorithms  was  one  by Sleator  and  Tarjan,  studying algo-

rithms for online list accessing and paging. 

Here,  we  focus  on  accessing  the  elements  of  a  linked  list  of  the  size  n.  Specifically,  if  the  k-th

element  of  the  list  is  accessed,  then  the  cost  incurred  for  this  access  is  k.  Immediately  after  the

access, we can move that item to any position closer to the front of the list at no extra cost. This is

called a free exchange. The algorithm can also exchange any two consecutive items at a cost of 1.

These are called paid exchanges.

The goal is to devise and analyze an on-line algorithm for doing accesses with a small competitive

factor.

Clearly, frequently accessed elements should be toward the front of the list. The problem, of course,

is  that  we do not  know which items will  be requested in  the future.  In the absence of  this  knowl-

edge, one could think of several natural online heuristics.

Transposition  (TRANS):  Always  move  the  most  recently  accessed  element  one  position  for-

ward, by swapping it with its neighbor.
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Transposition  (TRANS):  Always  move  the  most  recently  accessed  element  one  position  for-

ward, by swapping it with its neighbor.

Frequency Count(FC):  Maintain  a  frequence of  access for  each item.   Keep the list  sorted by

deacreasing fequency.

Move To Front (MTF): Always move the most recently accessed element to the front of the list.

To analyze the above heuristics, consider the following model:  the request sequence is  ΣH1L, ΣH2L,
... . The values ΣHiL and the sequence length t  are unknown. If ΣHiL is in position k, then the access

cost is k. Afterwards, the element can be moved forward (closer to the front) for free.

Transposition (TRANS). 

We  could  have  a  sequence  that  always  accesses  the  last  element  in  the  list:

ΣHxL, ΣHyL, ... ΣHxL, ΣHyL,  altogether  t-pairs.  This  results  in  repeated  swaps  between  the  last  two

elements.

CALG = t n

The optimum solution could move the last two elements to front on the first call

COPT = 2 n + 2 t

The competitive ratio

CR =
CALG

COPT

=
t n

2 n + 2 t
= WHnL as t ® ¥

Frequency Count(FC). We could construct a sequence in the following way: access the first element

k > n times, the second - Hk - 1L times, and finally the last element - Hk - n + 1L times. Observe, the

FC heuristic will never reorganize the list. The cost is given by

CALG = k + 2 Hk - 1L + 3 Hk - 2L + ... + nHk - n + 1L ³ Hk - nL H1 + 2 + ... + nL = WIk n2M
The optimum solution would move each element to the front when it is accessed for the first time

COPT = k + @2 + Hk - 2LD + @3 + Hk - 3LD + ... = k n

CR =
CALG

COPT

=
k n2

k n
= n

Theorem.  MTF is a 2-competitive algorithm 
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Theorem.  MTF is a 2-competitive algorithm 

CMTF £ 2 COPT

Proof. 

We observe that if the lists of OPT and MTF are identical, then accesses to any element cost exactly

the same. Thus, good moves by MTF are ones that make the lists more similar. An element in OPT

has a cheap access, if  the element is  close to the front. Thus, moving the element to the front will

make the lists much more similar in this case. 

The amortized cost AC is the actual cost ck  plus a change in the potential DF HskL
AC = ck + DF HskL = ck + F HskL - F Hsk-1L

We will measure similarity of the lists with a potential function

FHkL = the number of inversions between OPT and MFT after accessing k item

An inversion is a pair of distinct elements that appear in one order in one list and in a different order

in the other list. Example, 

a, c, d, e

c, e, a, d

the number of inversions is 3. Observe that in the worst case the number of inversions between two

arbitrary given lists is 
n
2

. The following picture shows list configurations at access i, which is an

item x:

Consider all elements before x in MTF and find them in OPT. Let

       S = 8y | y is before x in MTF and y is before x in OPT} - shown as solid circles.

       T = 8z | z is before x in MTF and z is after x in B} - shown as crosses.

Then we have
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Then we have

CMTFHiL = S + T + 1

Next,  find  a  change  in  potential  FHiL - FHi - 1L.  Moving  x  to  front  will  eliminate  T  inversions

(crosses) and create new S inversion (solid circles). Thus,

FHiL - FHi - 1L = S - T

But  this  is  not  all  -  OPT  is  also  allowed  to  rearrange  its  list.  Since  OPT  performs  only  paid

exchanges, each paid exchange creates one inversion.  Let P  denote the number of  paid exchanges

performed by OPT, hence

FHiL - FHi - 1L = S - T + P

Moreover,

COPTHiL = j + P ³ S + 1 + P

where j is a positon of x at access i. Putting it all together we get

AC = CMTFHiL + FHiL - FHi - 1L = S + T + 1 + HS - T + PL = 2 S + 1 + P £ 2 COPTHiL - 1

Finally, we add up over all requests

â
i=1

n

CMTFHiL + FHiL - FHi - 1L £ â
i=1

n

2 COPTHiL - 1

CMTF + â
i=1

n

FHiL - FHi - 1L £ 2 COPT - â
i=1

n

1

CMTF - FH0L + FHn - 1L £ 2 COPT - n

CMTF + FHn - 1L £ 2 COPT - n

CMTF £ 2 COPT - n - FHn - 1L £ 2 COPT

� The Cat && Mouse Game

There is one cat and one mouse which has n hiding places. A cat has a sequence of probes for find-

ing a mouse. At each time step, the cat comes to one of the places.  If it's the one a mouse is hiding

in,  the  mouse  has  to  move.  The  cost  is  the  number  of  times  the  mouse  has  moved.   Find  a  good

randomized strategy for the mouse.

Example, n = 4, the mouse is in 1 and cat's sequence is 82, 1, 3, 4, 2, 1, 3<.
Note: for any deterministic algorithm for the mouse, there exists a sequence for the cat that causes

the mouse to move every time. What's the simplest randomized algorithm for this problem? 
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Note: for any deterministic algorithm for the mouse, there exists a sequence for the cat that causes

the mouse to move every time. What's the simplest randomized algorithm for this problem? 

Definition.  The  online  algorithm  ALG  is  c-competitive  if  there  is  a  constant  Α  such  that  for  all

inputs Σ

E@CALGHΣLD £ c COPT HΣL + Α

RAND:  Mouse  starts  in  a  random  place.   Each  time  the  mouse  is  hit  by  the  cat,  the  mouse

moves to a random other place.

What is a strategy for the cat? The cat visits places 1, 2, ..., n - 1 repeatedly.  We should have

moved to point n at the start for a cost of 1.  But, we expect to move an expected n - 1 times.

Here's why.  Consider two cases. Case 1 - the mouse is at n, Case 2 - it's not at n. The probabil-

ity that we're on n at the start is 1 � n and our cost is 0 in this case. The probability that we're not

at n is 1 - 1 � n.   In this case what's the expected number of times we get hit before we land on

n?  Hn - 1L -  it's like flipping a coin of bias 1 � Hn - 1L until it gets a head.

An optimal mouse will initially choose to hide in spot n, thus COPT = 1.

So the RAND  algorithm is WHn) competitive, which is not what we're looking for. 

Claim. No algorithm can get oHlog nL ratio.

Proof. What if a cat probes randomly.  Then, no matter what a mouse does, it has 1 � n probability of

being forced to move.  So, in t  time steps, expected cost to move is t � n.  But, what is t? how long

does it take a cat to hit every place?  This is the coupon collector's problem.

Let pi be the probability of seeing a new place after seeing i places

pi =
n - i

n

Let  Xi  be  a  random  variable  representing  the  number  of  probes  to  see  a  new  place  after  seeing  i

places

E@X D = E@X0D + ... + E@Xn-1D = Hby the mean time of failureL 1

p0

+
1

p1

+ ... +
1

pn-1

E@X D =
n

n
+

n

n - 1
+ ... +

n

1
= n

1

n
+

1

n - 1
+ ... + 1 = QHn log nL

Thus every online mouse will move at least
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t

n
=

n log n

n
= log n

times for a single move of OPT. 

Marking. A better online algorithm.

1. The mouse starts in a random hiding place

2. If the cat looks in a place, mark that place

3. If the cat looks in the mouse's place, the mouse moves to a random unmarked place

4. When all places are marked, unmark them and restart

Claim. Marking is OHlog nL- competitive. For all cat probe sequences Σ

E@CALGHΣLD £ OHlog nL COPT HΣL
Proof. We divide the analysis into phases.  The last probe of a phase is the one that causes all of the

marks to be cleared.  Note that the set of probes in a phase must hit every spot.

There are two types of probes

     - probing a marked place (do not count this, since a cat knows our strategy)

     - probing a unmarked place

At the first probe, the cat find the mouse with 1 � n probability. At the second probe, the cat find the

mouse with 1 � Hn - 1L probability. And so on. So, the total expected number of moves per phase is

E@X D =
1

n
+

1

n - 1
+ ... + 1 = Hn = OHlog nL

An optimal mouse will hide in the last spot probed in the cat’s sequence, and thus the expected cost

to OPT is 1.
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