

Purpose - pattern matching

Given a very long text T, preprocess it, so that once a query text P is given, we can efficiently find if P appears in T.

SUFFIX TREES (Weiner ,1973)

Used to search the human genome.

Suffix Tree

A suffix tree of a string s is a compressed trie that stores all suffixes of s.

A compressed trie is a trie in which nonbranching paths are stored as single node labeled with a string.

Suffix Tree (uncompressed)
 $s=a b b a$

Suffix Tree - GOOGOL

Space complexity-? uncompressed vs. compressed...

Space Complexity

Fact: compressed tree requires a linear space

Proof:

1) \#_leaves = \#_suffixes
2) \#_internal nodes < \#_suffixes

Searching

Build a suffix tree for a text.
Traverse the tree according to the pattern.
If we did not get stuck traversing the pattern then the pattern occurs in the text.
The complexity is the pattern length.

How can we count occurrences of the pattern?

Occurrences of the pattern

The algorithm returns a subtree with all occurrences of a pattern (just count leaves)

Building Suffix Trees in $O(n)$ Time

We need some extra preprocessing:
a) Suffix array
b) Longest common prefix array

Suffix array is just the lexicographically sorted array of all its suffixes (indexes)

0	1	2	3	4	5	6
B	A	N	A	N	A	$\$$

k-th suffix begins at position k. 6,5,3,1,0,4,2 is a suffix array.

Building Suffix Trees in $O(n)$ Time For every two adjacent suffixes, we compute the longest common prefix

6	5	3	1	0	4	2
0	1	3	0	0	2	

We add suffixes into a tree in the

6	$\$$
5	A\$
3	ANA\$
1	ANANA\$
0	BANANA\$
4	NA\$
2	NANA\$

To add the next suffix into a tree we use the LCP values.
Complexity of building is the same as traversing a tree in preorder, which is linear.

Suffix Arrays

were introduced by Manber and Myers in 1989 (and published in 1993).

They take of a factor 4 less space then suffix trees.
They can be used for searching. $O(P+\log T)$

How would you search for a pattern?

6	$\$$
5	A\$
3	ANA\$
1	ANANA\$
0	BANANA\$
4	NA\$
2	NANA\$

Searching Suffix Arrays

Since suffix array is sorted we can use a binary search...

Let P be a pattern, and $A[k]$ is a suffix array. Compute
$L_{p}=\min \{k \mid P \leq A[k]$ or $k=n\}$
$R_{p}=\max \{k \mid P \geq A[k]$ or $k=-1\}$
as the left/right bounds.
At the start, $L_{p}=0$ and $R_{p}=n$.

6	$\$$
3	A\$
ANA\$	
	ANANA\$
4	BANANA\$
4	NA\$
2	NANA\$

Pattern matches some $A[k]$ for $k \in\left[L_{p}, R_{p}\right]$

