
1

String Matching - II

Morris Knuth

Algorithm Design and Analysis

Victor Adamchik CS 15-451 Spring 2014

Lecture 40 Apr 28, 2014 Carnegie Mellon University

Theorem:
At most 2N comparisons

in total

The KMP Algorithm

The Aho-Corasick Algorithm

(1986)

The algorithm preprocesses

the set of patterns.

Patterns {he, she, his, hers}

0 1
 h start

2 8 *
 e r s

6

4 3

na

na 5

7

9

 i

 s

 e h

 s

We still use the longest suffix rule. If we fail on
making a transition from a node N to its child, we
transition to a node M, where the string that
defines M is the farthest node (longest prefix)
from the root which is also a suffix of the string
we had matched when we failed (removing the first
transition).

The Aho-Corasick Algorithm

The only difference is that instead of traversing
a single string left-to-right we now have to
traverse a trie.

The Rabin-Karp Algorithm

(1981)

The algorithm uses the idea of
hashing

2

The main idea

pattern = 4848

text = 16180339887498948482045

We do not match a string against a given
pattern, but rather compare their hash codes.

The main idea

 pattern = 4848 % 71 = 20

1 6 1 8 0 3 3 9 8 8 7 4 9 8 9 4 8 4 8 2 0 4 5

1 6 1 8 1618 % 71 = 56

 6 1 8 0 6180 % 71 = 3

 1 8 0 3 1803 % 71 = 28

We read the text in the number of characters
equal to the length of the pattern, compute its
hash code and compare with the pattern hash
code.

What is its complexity?

M = pattern.length()

N = text.length();

Similar to a brute-force matching…

The key idea of improving the algorithm
is in computing a hash code in O(1).

Computing a hash code

How can we get from 145 to 456?

We will do this by creating a chain of operations

145 - 45 - 450 - 456

Remove the leading digit, multiply by a base, add

a single digit. It takes O(1) to compute a hash
code from the previous value.

Example

Given: a hash code for 31729

 31729 mod 41 = 36

Task: compute a hash code for 17295.

Example

Given: a hash code for 31729

 31729 mod 41 = 36

Task: compute a hash code for 17295.

Observe,

17295 = (31729 - 3*104) * 10 + 5

3

Example

17295%41 = [(31729%41-3*104%41) *10 + 5]%41

31729%41 is already computed.

3*104 % 41 will be precomputed

17295%41 = [(36 - 29) * 10 + 5]%41

 = 75 % 41 = 34

Rabin-Karp formalized

Let P[1 ... m] be a pattern and T[1 ... n] be a
text. We define a pattern

P = 10m-1 P[1] + 10 P[m-1] + … + P[m]

and a shift in the text:

ts = 10m-1T[s+1] + 10 T[s+m-1] + … + T[s+m]

The value ts+1 can be obtained from ts by

ts+1 = (ts - 10m-1T[s+1]) 10 + T[s+m+1]

We said

“31729%41 is already computed”

How would you compute it fast?

Exercise Horner’s Rule

a x4 + b x3 + c x2 + d x + e

=

e + x (d + x (c + x (b + a x)

Implementation
public int search(String T, String P){
 int M = P.length(), N = T.length();

 int dM = 1, h1 = 0, h2 = 0;
 int q = 3355439; /*pick it at random */
 int d = 256; /* radix */

 for(int j = 1; j < M; j++) dM = (d*dM) % q;

 for(int j = 0; j < M; j++){
 h1 = (h1*d + P.charAt(j)) % q;
 h2 = (h2*d + T.charAt(j)) % q;
 }

Implementation (cont.)

 if(h1 == h2) return 0;

 for(int i = M; i < N; i++) {
 h2 = h2 - T.charAt(i - M) * dM % q;
 h2 = (h2*d + T.charAt(i)) % q;
 if(h1 == h2) return i - M + 1;
 }

 return -1;
}

4

T == P mod q

What do we do in a case of

false match?

False match

When we found a match we can check
the match by char comparison.

TRIES = "retrieval"

Fredkin (1960)

Main idea: based on the digits of
the keys!

TRIES

• Each node (or edge) is labeled with a
character
• Children of node are ordered
(alphabetically)
• Paths from root to leaves yield all input
strings

sells sea shells by the sea shore

b

y

s t

 e

a l

l$

s

h

e$

l

l$

s

o

r

e

h

e

sentinel

Applications

 Auto completion
 Spell checkers
 Data compression
 Computational biology
 Google’s inverted tables

Node Structure

Often wasteful of space because many of the
child fields are null.

Possible node representations:
• Array
• Hash Table
• Linked List
• Binary Tree

5

Search

public boolean find (TrieNode node, String key)
{
 if (key.length()==0) return node.isWord();

 char ch = key.getChar(0);
 String rest = key.substring(1);
 TrieNode child = node.getChild(ch);
 if(child == null) return false;
 else
 return find (child, rest);
}

Runtime

complexity -?

Insert
public void insert (TrieNode node, String key)
{
 if (key.length()==0) node.setWord(true);
 char ch = key.getChar(0);
 String rest = key.substring(1);
 TrieNode child = node.getChild(ch);
 if(child == null) {
 node.setChild(new TrieNode(ch), ch);
 insert (newChild, rest);
 }
 else
 insert (child, rest);
}

Runtime

complexity -?

Prefix Match

b

y

s t

 e

a l

l$

s

h

e$

l

l$

s

o

r

e

h

e

Find all string
starting with
“sh”

Advantages, relative to BST

Search is faster !
It does not depend on the number of elements
in the tree.

Trie helps with prefix-matching.

Advantages, relative to hashing

 No collisions.

 No hash function.

 Alphabetical sorting. How?

6

Compressed Tries

• Each non-leaf node (except root) has at
least two children

• Replace a chain of one-child nodes with a
single node labeled with a string

Compressed Tries

sells sea shells by the sea shore

by s the

 e

a lls

h

e$

lls

ore

Compact Tries (PATRICIA)

A more compact representation of
compressed tries

by
s the

 e

a lls

h

e$

lls

ore
t h e

s h e l l s

s h o r e

Compact Tries (PATRICIA)

A more compact representation of
compressed tries

by
s the

 e

a lls

h

e$

lls

ore
t h e

s h e l l s

s h o r e

Integer
indexes

(i, j, k)

