

The Aho-Corasick Algorithm (1986)

The algorithm preprocesses the set of patterns.

The only difference is that instead of traversing a single string left-to-right we now have to traverse a trie.

The Aho-Corasick Algorithm

We still use the longest suffix rule. If we fail on making a transition from a node N to its child, we transition to a node M, where the string that defines M is the farthest node (longest prefix) from the root which is also a suffix of the string we had matched when we failed (removing the first transition).

The main idea
pattern $=4848$
text $=16180339887498948482045$
We do not match a string against a given
pattern, but rather compare their hash codes.

Example

Given: a hash code for 31729

$$
31729 \bmod 41=36
$$

Task: compute a hash code for 17295.

Example
Given: a hash code for 31729
$31729 \bmod 41=36$
Task: compute a hash code for 17295.

The main idea
pattern $=4848 \% 71=20$
16180339887498948482045
$1618 \quad 1618 \% 71=56$
$6180 \quad 6180 \% 71=3$
$1803 \quad 1803 \% 71=28$
We read the text in the number of characters equal to the length of the pattern, compute its hash code and compare with the pattern hash code.

Computing a hash code
 How can we get from 145 to 456 ?

We will do this by creating a chain of operations

$$
145-45-450-456
$$

Remove the leading digit, multiply by a base, add a single digit. It takes $O(1)$ to compute a hash code from the previous value.

Example

Given: a hash code for 31729

$$
31729 \bmod 41=36
$$

Task: compute a hash code for 17295.

Observe,

$$
17295=\left(31729-3 * 10^{4}\right) * 10+5
$$

Example
$17295 \% 41=[(31729 \% 41-3 * 104 \% 41) * 10+5] \% 41$
$31729 \% 41$ is already computed.
$3 * 104 \% 41$ will be precomputed
$17295 \% 41=[(36-29) * 10+5] \% 41$
$=75 \% 41=34$

Rabin-Karp formalized

Let $P[1 \ldots m]$ be a pattern and $T[1 \ldots n]$ be a text. We define a pattern

$$
P=10^{m-1} P[1]+10 P[m-1]+\ldots+P[m]
$$

and a shift in the text:

$$
t_{s}=10^{m-1} T[s+1]+10 T[s+m-1]+\ldots+T[s+m]
$$

The value t_{s+1} can be obtained from t_{s} by

$$
t_{s+1}=\left(t_{s}-10^{m-1} \mathrm{~T}[s+1]\right) 10+\mathrm{T}[s+m+1]
$$

Implementation

public int search(String T, String P)
int $M=$ P.length(), $N=$ T. length();
int dM = 1, h1 $=0, h 2=0$;
int $q=3355439$; /*pick it at random */
int d = 256; /* radix */
for(int $j=1 ; j<M ; j++) \quad d M=\left(d^{\star} d M\right) \% q ;$
for(int j = $0 ; j<M ; j++)\{$ $h 1=(h 1 * d+P . \operatorname{char} A t(j)) \% q ;$
$h 2=\left(h 2^{\star} d+\operatorname{T} \cdot \operatorname{char} A t(j)\right) \% q ;$
\}

Implementation (cont.)

if(h1 == h2) return 0;
for(int $i=M ; i<N ; i++)\{$ $h 2=h 2-\operatorname{T} \cdot \operatorname{char} A t(i-M) * d M \% q ;$ $h 2=\left(h 2^{*} d+\operatorname{T.char} A t(i)\right) \% q$; if(h1 == h2) return i $-M+1$;
\}
return -1;
\}

TRIES

- Each node (or edge) is labeled with a character
- Children of node are ordered (alphabetically)
- Paths from root to leaves yield all input strings
sells sea shells by the sea shore

Applications

Auto completion
Spell checkers
Data compression
Computational biology
Google's inverted tables

Node Structure

Often wasteful of space because many of the child fields are null.

Possible node representations:

- Array
- Hash Table
- Linked List
- Binary Tree

Insert

public void insert (TrieNode node, String key)
\{
if (key.length()==0) node.setWord(true);
char ch = key.getChar(0);
String rest = key.substring(1);
TrieNode child = node.getChild(ch);
if(child == null) \{
node.setChild(new TrieNode(ch), ch);
insert (newChild, rest);
\}
else
Runtime
insert (child, rest); complexity -?

Advantages, relative to BST

Search is faster!
It does not depend on the number of elements in the tree.

Trie helps with prefix-matching.

Advantages, relative to hashing

No collisions.
No hash function.
Alphabetical sorting. How?

Compressed Tries

- Each non-leaf node (except root) has at least two children
- Replace a chain of one-child nodes with a single node labeled with a string

