

Visualizing Set Cover
$S=\{1, \ldots, 6\}, S_{1}=\{1,2,4\}, S_{2}=\{3,4,5\}, S_{3}=\{1,3,6\}$,
$S_{4}=\{2,3,5\}, S_{5}=\{4,5,6\}, S_{6}=\{1,3\}$

Greedy Algorithm

$\mathfrak{u}=C$ [empty cover]
$C=\{ \}$
While there is uncovered element
Find the subset S_{k} covers the most elems
$\mathfrak{U} \leftarrow \mathfrak{U}-\mathrm{S}_{\mathrm{k}}$
$C \longleftarrow C \cup S_{k}$
Return C

How Good of an Approximation?

We'd like to compare the number of subsets returned by the greedy algorithm to the optimal

The optimal is unknown, however, if it consists of k subsets, then any part of the universe can be covered by k subsets!

How Good of an Approximation?

Theorem. If the optimal solution uses k sets, the greedy algorithm finds a solution with at most $\mathrm{k} \ln \mathrm{n}$ sets.

Proof. Since the optimal solution uses k sets, there must some set that covers at least a $1 / \mathrm{k}$ fraction of it.

Therefore, after the first iteration $n-n / k$ elems left.

Theorem. If the optimal solution uses k sets, the greedy algorithm finds a solution with at most $k \ln n$ sets.

Proof. (contd)
The algo chooses the most of the elems left which is $(n-n / k) / k$

Thus, after the second iteration there are $n-n / k-(n-n / k) / k$ elems left

Observe, $n-n / k-(n-n / k) / k=n(1-1 / k)^{2}$

Theorem. If the optimal solution uses k sets, the greedy algorithm finds a solution with at most $k \ln n$ sets.

Proof. (contd)
More generally, after y rounds, there are at most

$$
n(1-1 / k)^{y}
$$

elems left.

Choosing $y=k \ln n$, we get

$$
n(1-1 / k)^{y}=n(1-1 / k)^{k y / k} \leq n e^{-y / k}=n e^{-\ln n}=1
$$

Exactly-3-SAT Approximation

Theorem. If every clause has size exactly 3 , then there is a simple randomized algorithm that can satisfy at least a 7/8 fraction of clauses.

Proof. Try a random assignment to the variables.
$\operatorname{Pr}[$ clause is false $]=$?
Since there is only one out of 8 combinations that can make it false, the probability of the clause being false is $1 / 8$.

Exactly-3-SAT Approximation

Theorem. If every clause has size exactly 3 , then there is a simple randomized algorithm that can satisfy at least a 7/8 fraction of clauses.

Proof. (cont)
So if there are m clauses total, the expected number satisfied is $(7 / 8) \mathrm{m}$.

If the assignment satisfies less, just repeat.
With high probability it won't take too many tries before you do at least as well as the expectation.

Exactly-3-SAT Approximation

Theorem. If every clause has size exactly 3 , then there is a simple randomized algorithm that can satisfy at least a 7/8 fraction of clauses.

Theorem (Hastad, 1997).
If there is an c-approximation with $c>7 / 8$, then $P=N P$.

Exactly-3-SAT Approximation

With high probability it won't take too many tries before you do at least as well as the expectation.
Proof. (cont)
Let Z be the random variable denoting the number of clauses satisfied by a random assignment.
$\begin{array}{ll}\text { Let } p_{k}=\operatorname{Pr}[Z=k] & \leq\left(\frac{7}{8} m-\frac{1}{8}\right) \sum_{0 \leq k<7 / 8 m} p_{k} \leq m \sum_{7 / 8 m \leq k \leq m} p_{k}=x m \\ E[Z]=\frac{7}{8} m=\sum_{0 \leq k \leq m} k p_{k}=\sum_{0 \leq k<7 / 8 m} k p_{k}+\sum_{7 / 8 m \leq k \leq m} k p_{k} \leq\left(\frac{7}{8} m-\frac{1}{8}\right)+x m\end{array}$
It follows, $\quad X \geq \frac{1}{8 m}$

What about MAX-SAT in general?

Suppose we have a CNF formula of m clauses, with m_{1} clauses of size $1, m_{2}$ of size 2 , etc., and $m=m_{1}+m_{2}+\ldots$

Theorem. Then a random assignment satisfies

$$
\sum_{j} m_{j}\left(1-\frac{1}{2^{j}}\right) \quad \text { clauses in expectation. }
$$

Note

$$
\sum_{j} m_{j}\left(1-\frac{1}{2^{j}}\right) \geq \frac{1}{2} \sum_{j} m_{j} \geq \frac{1}{2} O P T
$$

Deterministic SAT Approximation

Suppose we have a CNF formula of m clauses, with m_{1} clauses of size $1, m_{2}$ of size 2 , etc., and $m=m_{1}+m_{2}+\ldots$

Pick X_{1}, for each of the two possible settings we then calculate the expected number of clauses satisfied if we were to go with that setting, and then set the rest of the variables randomly.

$$
\begin{gathered}
E[]=\frac{1}{2} E\left[X_{1}=\text { true }\right]+\frac{1}{2} E\left[X_{1}=\text { false }\right] \\
E\left[X_{1}=\text { true/false }\right] \geq E[] \geq \frac{1}{2} \text { OPT }
\end{gathered}
$$

Deterministic SAT Approximation
$\bar{X}_{1} \wedge\left(X_{1} \vee \bar{X}_{2}\right) \wedge\left(X_{1} \vee X_{2} \vee \bar{X}_{3}\right) \wedge\left(\bar{X}_{1} \vee \bar{X}_{2} \vee \bar{X}_{3}\right) \wedge\left(X_{1} \vee X_{2} \vee X_{3}\right)$

If we set X_{1} =false, we get in expectation

$$
1+\frac{1}{2}+\frac{3}{4}+1+\frac{3}{4}=4
$$

If we set $X_{1}=t r u e$, we get in expectation

$$
0+1+1+\frac{3}{4}+1=3 \frac{3}{4}
$$

So, we choose $X_{1}=$ false

Deterministic SAT Approximation

So, we choose $X_{1}=$ false
$\bar{X}_{1} \wedge\left(X_{1} \vee \bar{X}_{2}\right) \wedge\left(X_{1} \vee X_{2} \vee \bar{X}_{3}\right) \wedge\left(\bar{X}_{1} \vee \bar{X}_{2} \vee \bar{X}_{3}\right) \wedge\left(X_{1} \vee X_{2} \vee X_{3}\right)$

$$
\bar{X}_{2} \wedge\left(X_{2} \vee \bar{X}_{3}\right) \wedge\left(X_{2} \vee X_{3}\right)
$$

If we set $X_{2}=$ false, we get in expectation

$$
1+\frac{1}{2}+\frac{1}{2}=2
$$

If we set $X_{2}=t r u e$, we get in expectation

$$
0+1+1=2
$$

Using LP

We can set this problem as an integer programming
We define $X_{k} \in\{0,1\}$ for each variable and each $\mathrm{Z}_{\mathrm{k}} \in\{0,1\}$ for each clause C_{k}.
The goal $\max \sum_{j} m_{j} Z_{j}$
Subject to $Z_{j} \leq \sum_{i \in c_{j}^{\prime}} X_{i}+\sum_{i \in c_{j}}\left(1-X_{i}\right)$
where C_{j}^{+}are the variables that appear in C_{j} without negation.

Deterministic SAT Approximation

$$
E[]=\frac{1}{2} E\left[X_{1}=\text { true }\right]+\frac{1}{2} E\left[X_{1}=\text { false }\right]
$$

Fix X_{1} to the setting that gives us a larger expectation.
Now go on to X_{2} and do the same thing, setting it to the value with the highest expectation, and then X_{3} and so on.
Since we always pick the setting whose expectation is larger, this expectation never decreases

Relaxation

Since ILP is NP-complete, we solve a relaxation of the problem.
We define $0 \leq X_{k} \leq 1$ and $0 \leq Z_{k} \leq 1$
After solving LP we get $X_{k}=p_{k}$ and do a probabilistic rounding of the result.

$$
\operatorname{Pr}\left[C_{j}=\text { false }\right]=\prod_{i \in C_{j}^{*}}\left(1-p_{i}\right) \prod_{i \in C_{j}} p_{i}
$$

Next we use the arithmetic and geometric mean

$$
\prod_{i} p_{i} \leq\left(\frac{1}{n} \sum_{i} p_{i}\right)^{n}
$$

Relaxation

$$
\operatorname{Pr}\left[C_{j}=\text { false }\right]=\prod_{i \in C_{j}}\left(1-p_{i}\right) \prod_{i \in C_{j}} p_{i} \leq \frac{1}{\ell_{j}^{\ell_{j}}}\left(\sum_{i \in C_{j}}\left(1-p_{i}\right)+\sum_{i \in C_{j}} p_{i}\right)^{\ell_{j}}
$$

ℓ_{j} - \# of literals. We simplify this using constrains on Z_{j}

$$
Z_{j} \leq \sum_{i \in C_{j}} X_{i}+\sum_{i \in C_{j}}\left(1-X_{i}\right)
$$

to get $\quad \operatorname{Pr}\left[C_{\mathrm{j}}=\right.$ false $] \leq\left(\frac{\ell_{\mathrm{j}}-Z_{\mathrm{j}}}{\ell_{\mathrm{j}}}\right)^{\ell_{\mathrm{j}}}$
and

$$
\operatorname{dr}\left[C_{\mathrm{j}}=\operatorname{true}\right] \geq 1-\left(1-\frac{Z_{\mathrm{j}}}{\ell_{\mathrm{j}}}\right)^{\ell_{\mathrm{j}}}=\left(1-\left(1-\frac{1}{\ell_{\mathrm{i}}}\right)^{\ell_{j}}\right) Z_{\mathrm{j}}
$$

Relaxation

$$
\begin{aligned}
\operatorname{Pr}\left[C_{\mathrm{j}}=\text { true }\right] \geq\left(1-\left(1-\frac{1}{\ell_{\mathrm{j}}}\right)^{\ell_{\mathrm{j}}}\right) Z_{\mathrm{j}} & \geq \beta Z_{\mathrm{j}} \\
\qquad & =1-\frac{1}{e} \approx 0.63
\end{aligned}
$$

From here we get a β-approximation.
E[]$=\sum_{\mathrm{j}} \mathrm{m}_{\mathrm{j}} \operatorname{Pr}\left[C_{\mathrm{j}}=\right.$ true $] \geq \beta \sum_{\mathrm{j}} \mathrm{m}_{\mathrm{j}} \mathrm{Z}_{\mathrm{j}} \geq \beta$ OPT $_{\text {relaxed }} \geq \beta$ OPT
Theorem (1994). Randomized rounding is a 0.63 -approximation algorithm.

Non-linear rounding

We don't have to take the output of the linear program as the probabilities for X_{k}.

We could use some function to generate probabilities for X_{k}.

$$
\operatorname{Pr}\left[C_{j}=\text { false }\right]=\prod_{i \in c_{j}^{+}}\left(1-f\left(X_{i}\right)\right) \prod_{i \in c_{j}} f\left(X_{i}\right)
$$

This will result in a $\frac{3}{4}$-approximation algorithm
The best result is a 0.78 -approximation algorithm

