

S 15-451 Spring 2014

Victor Adamchik	CS 15-451 Spring 2014	
Lecture 37	Apr 21,2014	Carnegie Mellon University

Approximation Algorithms

Computational hardness

Suppose we are given an NP-complete problem to solve.

Can we develop polynomial-time algorithms that always produce a "good enough" solution?

Vertex cover

Lemma. Let M be a matching in G, and S be a vertex cover, then $|S| \geq|M|$.

Proof.
S must cover at least one vertex
 for each edge in M.

Vertex cover

Def. A matching M is maximal if there is no matching M^{\prime} such that $M \subseteq M^{\prime}$.

Which of the following algos. would find a maximal matching:
a) Greedily add edges that are disjoint from the edges added so far, while such edges exist
b) Compute a maximum matching
c) Both
d) Neither

Approximation Vertex Cover

```
Approx-VC(G):
M\longleftarrow maximal matching on G
S \leftarrow take both endpoints of edges in M
Return S
```

Theorem. Let OPT(G) be the size of the optimal vertex cover and S = Approx-VC(G).
Then $|S| \leq 2 \cdot \operatorname{OPT}(G)$
Proof. $|S|=2|M| \leq 2 \cdot O P T(G)$

Algorithm-2

We can solve this using the linear programming. Note we made the problem easier by allowing fractional solutions.

Approx-VC-LP(G):

Assign $0 \leq x_{k} \leq 1$ to each vertex.
For each edge $x_{i}+x_{j} \geq 1$.
Find $\min \sum_{k} x_{k}$
To go back to an integer solution, we pick $x_{k} \geq \frac{1}{2}$.
This algorithm is also a factor 2 approximation.

Approximation Vertex Cover

Is $c=2$ a tight bound for this algorithm?
Consider a complete bipartite graph $\mathrm{K}_{\mathrm{n}, \mathrm{n}}$
What is the size of the optimal solution $\operatorname{OPT}\left(K_{n, n}\right)$? n

What is the size of any maximal matching $M\left(K_{n, n}\right)$? n

Approx-VC($\left.\mathrm{K}_{\mathrm{n}, \mathrm{n}}\right)=2 \mathrm{n}$

Formal Definition

Let P be a minimization problem, and I be an instance of P. Let $A L G(I)$ be a solution returned by an algorithm, and let OPT(I) be an optimal solution.
Then $A L G(I)$ is said to be a c-approximation algorithm, if for $\forall I, A L G(I) \leq c \cdot O P T(I)$.

These notions allow us to circumvent NP-hardness by designing polynomial-time algos with formal worst-case guarantees!

Traveling Salesman Problem

Given a complete undirected graph $G=(V, E)$ with edge cost $c: E \rightarrow R^{+}$, find a min cost Hamiltonian cycle (HC).

Claim: TSP is NP-hard.
Proof by reduction from a HC which is NPC.
Given the input $G=(V, E)$ to $H C$, we modify it to construct a complete graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ and cos \dagger function as follows:
$c(u, v)=0$, if edge $(u, v) \in E$
$c(u, v)=1$, otherwise.
G has a $H C$ iff $\left|T S P\left(G^{\prime}\right)\right|=0$

Metric TSP

We are allowed to visit vertices multiple times.
We construct a new graph with an edge between every pair of nodes with length equal to the length of the shortest path between them. The shortest path forms a metric:

$$
\begin{gathered}
c(u, v) \geq 0, c(v, v)=0 \\
c(u, v)=c(v, u), \\
c(u, v) \leq c(u, w)+c(w, v)
\end{gathered}
$$

Claim: Metric TSP is NP-hard.

Approximation Algorithm

Approx-TSP(G):

1) Find a MST of G
2) Complete an Euler tour by doubling edges
3) Remove multiply visited edges

Traveling salesman problem

The largest solved TSP (as of 2013), an 85,900-vertex route calculated in 2006. The graph corresponds to the design of a customized computer chip created at Bell Laboratories, and the solution exhibits the shortest path for a laser to follow as it sculpts the chip.

Christofides Algorithm

Observe that a factor 2 in the approximation ratio is due to doubling edges; we did this in order to obtain an Eulerian tour.

But any graph with even degrees vertices has an Eulerian tour.

Thus we have to add edges only between odd degree vertices

Approximation Metric-TSP

Theorem. Approx-TSP is a 2-approximation algorithm for a metric TSP.

Proof.
\mid Approx-TSP $|\leq|$ Euler Tour $|=2 \cdot| M S T|\leq 2 \cdot| O P T$
 decreases the cost

we can get a spanning tree from HC by removing edges

Traveling Salesman Problem

Theorem: If $P \neq N P$, then for $\forall c>1$ there is NO a poly-time c-approximation of general TSP.
Proof. To show Ham-cycle $\leq_{p} c$-approx TSP.
Start with G and create a new complete graph G^{\prime} with the cost function

$$
c(u, v)=1, \text { if }(u, v) \in E
$$

$$
c(u, v)=c \cdot n \text {, otherwise }(n=|V|)
$$

If G has $H C$, then $|T S P|=n$.
If G has no $H C$, then $|T S P| \geq(n-1)+c \cdot n \geq c \cdot n$
Since the |TSP| differs by a factor c, our approx. algorithm can be able to distinguish between two cases, thus decide if G has a ham-cycle.

Christofides Algorithm

Lemma. $c(M) \leq \frac{1}{2}$ OPT

Proof. Split M into M_{1} and M_{2} by taking edges alternatively. $|S|$ is even.
$c(M) \leq \frac{1}{2}\left(c\left(M_{1}\right)+c\left(M_{2}\right)\right)$
$c\left(M_{1}\right)+c\left(M_{2}\right) \leq$ OPT

It follows, $c(M) \leq \frac{1}{2}$ OPT

Metric TSP for directed graphs

What is MST-based heuristic in this case?
Recall min-cost arborescences! Lecture 14.

We compute it by a cycle shrinking algorithm

Theorem. This algorithm is a $\log n$-approximation of a metric TSP.

