Algorithm Design and Analysis CS 15-451 Victor Adamchik Carnegie Mellon University Apr 09, 2014

Lecture 33

Spring 2014

Smale's third problem

Millennium Prize Problems

Seven famous problems in math stated in 2000 by the Clay Foundation \$1,000,000 prize for solving any of them

One of the problems: P vs. NP

Polynomial Time Complexity

Is there a fixed constant c and an algorithm A such that A solves the decision problem in time $O(n^{\circ})$?

Verifying solutions In some problems (like SUDOKU), verifying the solution can be done efficiently NP = Decision problems whose solutions can be verified in polynomial time in their input size The N in NP stands for "nondeterministically"

Here's how P vs. NP is usually (informally) stated:

Let L be an algorithmic task.

Suppose there is an efficient algorithm for verifying solutions to L. "LENP"

Is there always also an efficient algorithm for finding solutions to L? "L∈P"

Definition of P

An input is encoded as a binary string.

 P = {L \subseteq {0, 1}* | \exists polynomial time algorithm for deciding L}

Definition of NP

NP = {

 $\label{eq:L} \begin{array}{l} { L \subseteq \{0, 1\}^{\star} \mid \exists \mbox{ polynomial time } \underline{\mbox{verifier}} \\ R(x, y) = \mbox{true, where } x \in L \mbox{ and } |y| \leq O(|x|^c) \end{array} \end{array}$

Definition of NP-complete

L is NP-complete iff 1) $L \subseteq NP$ 2) $L \subseteq NP$ -hard

2) For all $Y \subseteq NP$, $Y \leq_p L$

NP-complete Reduction

A recipe for proving any $L \in \text{NP-complete:}$

1) Prove $L \in NP$

2) Choose A \in NPC and reduce it to L

2.1) Describe mapping f:A -> L

2.2) Prove $x \in A$ iff $f(x) \in L$

2.3) Prove f is polynomial

Conjunctive Normal Form

Let X_k denote variables. We define literals as either X_k or $!X_k$.

The conjunctive normal form (CNF) is an AND of OR clauses. For example,

 $\textbf{(X}_1 \lor \textbf{X}_2 \lor \textbf{!X}_3 \textbf{)} \land \textbf{(X}_1 \lor \textbf{!X}_2 \lor \textbf{X}_4 \textbf{)} \land ...$

SAT Problem: is there exist a set of variables that satisfy a given CNF?

Cook-Levin Theorem (1971)

SAT is NP-complete

No proof, see Kozen's textbook.

3-CNF problem (or 3-SAT)

Each clause has a most 3 literals.

Question: Is there such a set of input variables that 3-cnf is true?

Theorem. 3-CNF is NP-complete

Proof. 3-CNF \subseteq NP We need to show CNF \leq_{p} 3-CNF.

CNF ≤_p 3-CNF

We need to convert any CNF into 3-CNF ...

Claim:

 $(a \lor b \lor c \lor d)$ is true iff $(a \lor b \lor x) \land (!x \lor c \lor d)$ is true

 $(a \lor b \lor c \lor d \lor e) \text{ converts to}$ $(a \lor b \lor x) \land (!x \lor c \lor y) \land (!y \lor d \lor e)$

The rest of the proof is left as an exercise to a reader.

Clique is NP-complete

1) Clique is in NP

2) We will show that SAT ≤_p Clique

Create a vertex for each variable in a clause, assume k-clauses.

Two vertices (from different clauses) are connected if one is NOT negation of other.

A CNF is satisfiable if at least one literal in each clause is true. Thus those literals create a k-clique.

Sudoku

Theorem (2002)

There is a polynomial reduction from 3-coloring to sudoku.

