

Verifying solutions

In some problems (like SUDOKU), verifying the solution can be done efficiently

NP = Decision problems whose solutions can be verified in polynomial time in their input size

Millennium Prize Problems

Seven famous problems in math stated in 2000 by the Clay Foundation $\$ 1,000,000$ prize for solving any of them

One of the problems: \mathbf{P} vs. NP

Polynomial Time Complexity

Is there a fixed constant c and an algorithm A such that A solves the decision problem in time $O\left(n^{c}\right)$?

Here's how P vs. NP is usually (informally) stated:

Let L be an algorithmic task.

Suppose there is an efficient algorithm
for verifying solutions to L. "LENP"
Is there always also an efficient algorithm for finding solutions to L ? " $L \in P$ "

Definition of P
An input is encoded as a binary string.
$P=\left\{L \subseteq\{0,1\}^{\star} \mid \exists\right.$ polynomial time algorithm for deciding $L\}$

Definition of $N P$-hard
$N P$-hard $=\left\{L \subseteq\{0,1\}^{\star} \mid \forall X \in N P\right.$ and $\left.X \leq_{p} L\right\}$
To reduce problem X to problem L (we write $X \leq_{p} L$)
we want a function f that maps X to L such that:
1) f is a polynomial time computable
2) $x \in X$ if and only if $f(x) \in L$.
In short. We need to convert X into L.
Lemma. If $A \leq_{p} B$ and $B \in P$ then $A \in P$.

NP-complete Reduction

A recipe for proving any $L \in N P$-complete:

1) Prove $L \in N P$
2) Choose $A \in$ NPC and reduce it to L
2.1) Describe mapping $f: A \rightarrow L$
2.2) Prove $x \in A$ iff $f(x) \in L$
2.3) Prove f is polynomial

Conjunctive Normal Form

Let X_{k} denote variables.
We define literals as either X_{k} or ! X_{k}.
The conjunctive normal form (CNF) is an AND of OR clauses. For example,
$\left(X_{1} \vee X_{2} \vee!X_{3}\right) \wedge\left(X_{1} \vee!X_{2} \vee X_{4}\right) \wedge \ldots$

SAT Problem: is there exist a set of variables that satisfy a given CNF?

3-CNF problem (or 3-SAT)

Each clause has a most 3 literals.

Question: Is there such a set of input
variables that 3-cnf is true?

Theorem. 3-CNF is NP-complete
Proof.
$3-C N F \subseteq N P$
We need to show $C N F \leq_{p} 3-C N F$.
$C N F \varsigma_{p} 3-C N F$

We need to convert any CNF into 3-CNF..
Claim:
($a \vee b \vee c \vee d$) is true iff
$(a \vee b \vee \times) \wedge(l \times \vee c \vee d)$ is true
($a \vee b \vee c \vee d \vee e$) converts to
$(a \vee b \vee \times) \wedge(l \times \vee c \vee y) \wedge(l y \vee d \vee e)$
The rest of the proof is left as an exercise to a reader.

Clique is NP-complete

1) Clique is in NP
2) We will show that $S A T \leq_{p}$ Clique

Create a vertex for each variable in a clause, assume k-clauses.

Two vertices (from different clauses) are connected if one is NOT negation of other.

A CNF is satisfiable if at least one literal in each clause is true. Thus those literals create a k-clique.

Sudoku
Theorem (2002)
There is a polynomial reduction from 3-coloring
to sudoku.

Travelling Salesman is an intellectual thriller about four mathematicians hired by the U.S. government to solve the most elusive problem in computer science history - P vs. NP.

The four have jointly created a "system" which could be the next major advancement for our civilization or destroy the fabric of humanity.
www.travellingsalesmanmovie.com/

