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A divide-and-conquer algorithm consists of three steps:
• dividing a problem into smaller subproblems
• solving (recursively) each subproblem
• then combining solutions to subproblems to get solution to original problem

We  use  recurrences  to  analyze  the  running  time  of  such  algorithms.  Suppose  Tn  is  the

number  of  steps  in  the  worst  case  needed  to  solve  the  problem  of  size  n.  Let  us  split  a
problem  into  a ¥ 1  subproblems,  each  of  which  is  of  the  input  size  n

b
where  b > 1.

Observe, that the number of subproblems a is not necessarily equal to b. The total number
of  steps  Tn  is  obtained  by  all  steps  needed  to  solve  smaller  subproblems  Tnêb  plus  the

number  needed  to  combine  solutions  into  a  final  one.  The  following  equation  is  called
divide-and-conquer recurrence relation

Tn = a Tnêb + f HnL
As an example, consider the mergesort:

-divide the input in half
-recursively sort the two halves 
-combine the two sorted subsequences by merging them.

Let THnL be worst-case runtime on a sequence of n keys:

If n = 1, then THnL = QH1L constant time

If n > 1, then THnL = 2 THn ê 2L + QHnL 
here Q(n) is time to do the merge. Then



Tn = 2 Tnê2+QHnL
Other  examples  of  divide  and  conquer  algorithms:  quicksort,  integer  multiplication,
matrix multiplication, fast Fourier trnsform, finding conver hull and more.

There are several techniques of solving such recurrence equations:
• the iteration method
• the tree method
• the master-theorem method
• guess-and-verify

ü Tree method

We could  visualize  the  recursion  as  a  tree,  where  each  node  represents  a  recursive  call.
The root is the initial call. Leaves correspond to the exit condition. We can often solve the
recurrence by looking at the structure of the tree. To illustrate, we take this example

THnL = 2 TKn

2
O+ n2

TH1L = 1

Here is a recursion tree that diagrams the recursive function calls

T(n)

T(n/2) T(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

………………

T(1) T(1)

Using a recursion tree we can model the time of a recursive execution by writing  the size
of the problem in each node.

15-451: Algorithm Design and Analysis 2



Using a recursion tree we can model the time of a recursive execution by writing  the size
of the problem in each node.

The last level corresponds to the initial condition of the recurrence. Since the work at each
leaf is constant, the total work at all leaves is equal to the number of leaves, which is

2h = 2log2 n = n

To find the total time (for the whole tree), we must add up all the terms 

THnL = n + n2 1 +
1

2
+

1

4
+

1

8
+ ... = n + n2 ‚

k=0

-1+log2 n 1

2

k

The sum is easily computed by means of the geometric series

‚
k=0

h

xk =
xh+1 -1

x-1
, x ∫ 1

This yeilds
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THnL = 2 n2 -2 n+ n = 2 n2 - n

Check with Mathematica 

RSolveA9T@nD == 2 T@n ê 2D + n2, T@1D ä 1=, T@nD, nE

88T@nD → n H−1 + 2 nL<<

Example. Solve the recurrence

THnL = 3 TKn

4
O+ n

The work at all levels is

n 1+
3

4
+

9

16
+ ...

Since the height is log4 n, the tree has 3log4 n leaves. Hence, the total work is given by

THnL = n ‚
k=0

-1+log4 n 3

4

k

+ 3log4 n TH1L

By means of the geometric series and taking into account 

3log4 n = nlog4 3

the above sum yields

THnL = 4 n -4nlog4 3+ nlog4 3 TH1L = OHnL
ü The Master Theorem

The master theorem solves recurrences of the form

THnL = a T
n

b
+ f HnL

for  a  wide  variety  of  function  f HnL  and  a ¥ 1,  b > 1.  In  this  section  we  will  outline  the
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H L
main idea. Here is the recursive tree for the above equation

It  is  easy to see that  the tree has alogb n  leaves. Indeed, since the height  is  logb n,  and the

tree branching factor is a, the number of leaves is 

ah = alogb n = a
log

a
n

log
a

b = n
1

log
a

b = nlogb a

Summing up values at each level, gives

THnL = f HnL + a f
n

b
+ a2 f

n

b2
+ ...+ nlogb a TH1L

Therefore, the solution is

THnL = nlogb a TH1L+ ‚
k=0

-1+logb n

ak f
n

bk

Now we  need  to  compare  the  asymptotic  behavior  of  f HnL  with  nlogb a.  There  are  three

possible cases. 

THnL =
QInlogb aM if f HnL = OInlogb aM
QInlogb n logk+1 nM if f HnL = QInlogb a logk nM, k ¥ 0

QH f HnLL if f HnL = WInlogb aM
The following examples demonstrate the theorem.

Case 1.  THnL = 4 TI n
2
M+ n 

We  have  f HnL = n  and  nlogb a = nlog2 4 = n2,  therefore  f HnL = OIn2M.  Then  the  solution  is

THnL = QIn2M by case 1.

Case 2.  THnL = 4 TI n
2
M+ n

2

In this case f HnL = n2 and f HnL = QIn2M. Then  THnL = QIn2 lognM by case 2.

Case 3.  THnL = 4 TI n
2
M+ n

3

In this case f HnL = n3 and f HnL = WInlogb aM = WIn2M. Then THnL = QIn3M by case 3.
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Karatsuba Algorithm

ü Multiplication of large integers

The brute force approach ("grammar school" method)

      1 2 3

        4 5

      ------

      6 1 5

  4 9 2

   ---------

    5 5 3 5

We say that multiplication of two n-digits integers has time complexity at worst OIn2M.
We  develop  an  algorithm  that  has  better  asymptotic  complexity.  The  idea  is  based  on
divide-and-conquer technique.

Consider the above integers and split each of them in two parts

123 = 12 * 10 + 3

 45 =  4 * 10 + 5

and then multiply them:

123*45 = (12*10 + 3)(4*10 + 5) = 

12∗4∗102 + H12∗5 + 4∗3L∗10 + 3∗5 

In general, the integer  which has n digits can be represented as

num= x * 10m
+ y

where 

m = floorKn

2
O

x = ceilingKn

2
O

y = floorKn

2
O

Example,

154 517 766 = 15451 ∗ 104 + 7766

Consider two n-digits numbers
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num1 = x1 *10p
+ x0

num2 = y1 * 10p
+ y0

Their product is

num1 * num2 = x1 * y1 *102 p
+ Hx1 * y0 + x0 * y1L * 10p

+ x0 * y0

Just looking at this general formula you can say that just instead of one multiplication we
have 4. 

Where is the advantage? 

numbers x1, x0 and y1, y0 have twice less digits.

ü The worst-case complexity

Let  THnL  denote the number of digit  multiplications needed to multiply two n-digits num-
bers.  

The recurrence (since the algorithm does 4 multiplications on each step)

THnL = 4 TI n
2
M+OHnL, THcL = 1

Note, we ignore multiplications by a base!!! Its solution is given by 

THnL = 4log2 n = n2

The algorithm is still quadratic!

ü The Karatsuba Algorithm 

1962,   Anatolii Karatsuba,   Russia.

num1 * num2 = x1 * y1 * 102 p
+ Hx1 * y0 + x0 * y1L * 10p

+ x0 * y0

The goal is to decrease the number of multiplications from 4 to 3. 
We can do this by observing that

Hx1 + x0L * Hy1 + y0L = x1 * y1 + x0 * y0 + Hx1 * y0 + x0 * y1L
It follows that

num1 * num2 = x1 * y1 * 102 p
+ J Hx1 + x0L * Hy1 + y0L- x1 * y1 - x0 * y0 N * 10p

+ x0 * y0

and it is only 3 multiplications (see it ?).

The total number of multiplications is given by (we ignore multiplications by a base)

THnL = 3 TI n
2
M+OHnL,      T(c) = 1

Its solution is
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THnL = 3log2 n = n log2 3 = n1.58...

ü Toom-Cook 3-Way Multiplication

1963,   A. L. Toom,  Russia.
1966,  Cook,  Harvard,  Ph.D Thesis

The key idea of the algorithm is to divide a large integer into 3 parts (rather than 2) of size
approximately n ê 3  and then multiply those parts.

Here is the equation of for the total number of multiplications

THnL = 9 T
n

3
+OHnL, THcL = 1

and the solution

TH nL = 9 log3 n = n2

Let us reduce the number of multiplications by one

THnL = 8 T
n

3
+OHnL

THnL = 8log3 n = nlog3 8 = n1.89...

No advantage.  This does not improve the previous algorithm, that runs at OIn1.58...M
How many multiplication should we eliminate? 

Let us consider that equation in a general form, where parameter p > 0 is arbitrary

THnL = p T
n

3
+OHnL

THnL = plog3 n = nlog3 p

Therefore, the new algoritnm will be faster than OIn1.58M if we reduce the number of multi-

plications to five

THnL = 5log3 n = nlog3 5 = n1.47...

This is an improvement over Karatsuba.

Is it possible to reduce a number of multiplications to 5? 

Yes, it follows from this system of equations:

x0 y0 = Z0

12Hx1 y0+ x0 y1L = 8 Z1 -Z2 -8 Z3 +Z4

24Hx2 y0+ x1 y1 + x0 y2L = -30Z0 +16Z1 -Z2 +16Z3 -Z4

12Hx2 y1+ x1 y2L = -2 Z1 +Z2 +2 Z3 -Z4

24x2 y2 = 6 Z0 -4 Z1 +Z2 -4 Z3 +Z4

where
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Z0 = x0 y0

Z1 = Hx0 + x1 + x2L Hy0+ y1 + y2L
Z2 = Hx0 +2 x1 +4 x2L Hy0+2 y1 +4 y2L
Z3 = Hx0 - x1 + x2L Hy0- y1 + y2L
Z4 = Hx0 -2 x1 +4 x2L Hy0-2 y1 +4 y2L

ü Further Generalization

It is possible to develop a faster algorithm by increasing the number of splits.

Let us consider a 4-way splitting. How many multiplications should we have on each step
so this algorithm will outperform the 3-way splitting?

THnL = p TK n

4
O+OHnL

THnL = p log4 n = n log4 p

We find parameter p from

log4 p  log3 5

which yields 

p = 7

The following table demonstrates a relationship between splits and the number of multiplica-
tions:

Intuitively we see that the k-way split requires 2 k - 1 multiplications.

This means that instead of k2 multiplications we do only 2k -1. 

The recurrence equation for the total number of multiplication is given by

THnL = H2 k -1L T
n

k
+OHnL

and its solution is

THnL = H2 k -1L logk n
= n logk H2 k-1L

Here is the sequence of the k-way splits when k runs from 2 to 10:
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n1.58, n1.46, n1.40, n1.36, n1.33, n1.31, n1.30, n1.28, n1.27 ...

We can prove that  asymptotically multiplication of two n-digits  numbers requires OIn1+eM
multiplications, where e Ø 0. 

Note, we will NEVER get a linear performance (prove this!)

Is it always possible to find such 2k -1 multiplications?

Consider two polynomials of k -1 degree

polyn1 = ak-1 xk-1 + ak-2 * xk-2 + ...+ a1 * x+ a0

polyn2 = bk-1 xk-1 + bk-2 * xk-2 + ...+ b1 * x+ b0

when we multiply them we get a polynomial of 2k -2 degree

polyn1 * polyn2 = ak-1 bk-1 * x2 k-2 + ... + Ha1 b0 + b1 a0L * x + a0 b0

The  above  polynomial  has  exactly  2k -1  coefficients,  therefore  it's  uniquely  defined  by
2 k -1 values.
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