

The Minimum Spanning Tree
for Undirected Graphs
Find a spanning tree of minimum total weight.
The weight of a spanning tree is the sum of the weights on all the edges which comprise the spanning tree.

Prim's Algorithm

Greedy algorithm that builds a tree one VERTEX at a time.

First described by Jarnik in a 1929 letter to Boruvka.
Rediscovered by Kruskal in 1956, by Prim in 1957, by Loberman and Weinberger in 1957, and finally by Dijkstra in 1958.

Plan:
Min-cost Spanning Tree Algorithms:

- Prim's (review)
- Arborescence problem

Kleinberg-Tardos, Ch. 4

Prim's Algorithm

algorithm builds a tree one VERTEX at a time.

- Start with an arbitrary vertex as component C
- Expand C by adding a new vertex having the minimum weight edge with exactly one end point in C.
- Continue to grow the tree until C gets all vertices.

Prim's Algorithm

$$
C=\{a, d, c, b, e, f\}
$$

Weight $=1+1+2+2+3=9$

Property of the MST

Lemma: Let X be any subset of the vertices of G, and let edge e be the smallest edge connecting X to $G-X$. Then e is part of the minimum spanning tree.

The Minimum Spanning Tree
 for Directed Graphs

This example exhibits two problems

What is the meaning of MST for directed graphs?

Clearly, we want to have a rooted tree, in which we can reach any vertex staring at the root

How would you find it?
Clearly, the greedy approach of Prim's does not work

Arborescences

Theorem. A subgraph T of G is an arborescence rooted at r iff T has no directed cycles and each node $v \neq r$ has exactly one entering edge.
Proof.
$\Rightarrow)$ Trivial.
\Leftrightarrow Start a vertex v and follow edges in backward direction.

Since no cycles you eventually reach r.

Def. Given a digraph $G=(V, E)$ and a vertex $r \in V$, an arborescence (rooted at r) is a tree T s.t.
T is a spanning tree of G if we ignore the direction of edges.
There is a directed unique path in T from r to each other node $v \in V$.

Min-cost Arborescences

Observation 1. This is not a min-cost spanning tree. It does not necessarily include the cheapest edge.

Running Prim's on undirected graph won't help.
Running an analogue of Prim's for directed graph won't help either

Min-cost Arborescences

Observation 2. This is not a shortest-path tree

Edges rb and rc won't be in the min-cost arborescence tree

Edge reweighting

For each $v \neq r$, let $\delta(v)$ denote the min cost of any edge entering v.
In the picture, $\delta(x)$ is 1 .
The reduced cost $w^{*}(u, v)=w(u, v)-\delta(v) \geq 0$
$\delta(y)$ is 5.
$\delta(a)$ is 3.
$\delta(b)$ is 3.

Algorithm: intuition

Let G^{\star} denote a new graph after reweighting.
For every $v \neq r$ in G^{*} pick 0 -weight edge entering v. Let B denote the set of such edges.

If B is an arborescence, we are done.
Note B is the min-cost since all edges have 0 cost.
If B is NOT an arborescence...
When B is not an arborescence?

\qquadAlgorithm: intuition Let G^{\star} denote a new graph after reweighting. For every $v \neq r$ in G^{\star} pick 0-weight edge entering v. Let B denote the set of such edges. If B is an arborescence, we are done. \quad Note B is the min-cost since all edges have 0 cost. If B is NOT an arborescence... When B is not an arborescence?

$$
w^{*}(u, v)=w(u, v)-\delta(v)
$$

Lemma. An arborescence in a digraph has the min-cost with respect to w iff it has the mincost with respect to w^{*}.

Proof. Let T be an arborescence in $G(V, E)$.
Compute $w(T)-w^{*}(T)$
$\delta(v)-\min$ cost of any edge entering v

$$
w(T)-w^{*}(T)=\sum_{e \in T} w(e)-w^{*}(e)=\sum_{v \in V V_{r}} \delta(v)
$$

The last term does not depend on T.
QED

How can it happen B is not an arborescence?

Note, only a single edge can enter a vertex

when it has a directed cycle or several cycles...

The Algorithm

For each $v \neq r$ compute $\delta(v)$ - the mincost of edges entering v.
For each $v \neq r$ compute $w^{*}(u, v)=w(u, v)-\delta(v)$.
For each $v \neq r$ choose 0 -cost edge entering v.
Let us call this subset of edges - B.
If B forms an arborescence, we are done.
else
Contract every cycle C to a supernode
Repeat the algorithm
Extend an arborescence by adding all but one edge of C.
Return

Vertex contraction

We contract every cycle into a supernode Dashed edges and nodes are from the original graph G.

Recursively solve the problem in contracted graph
Complexity
At most V contractions (since each one reduces the
number of nodes).
Finding and contracting the cycle C takes $O(E)$.
Transforming T^{\prime} into T takes $O(E)$ time.
Total - O(V E).
Faster for Fibonacci heaps.
Take

O-weight
edges.
break ties
arbitrarily

reweight

Correctness

Lemma. Let C be a cycle in G consisting of 0 -cost edges. There exists a mincost arborescence rooted at r that has exactly one edge entering C.

Correctness

Lemma. Let C be a cycle in G consisting of 0 -cost edges. There exists a mincost arborescence rooted at r that has exactly one edge entering C.

Proof. Let T be a min-cost arborescence that has more than one edge enters C

Let (a, x) lies on a shortest path from r.

We delete all edges in T that enters C except (a, b)
We add all edges in C except the one that enters x.

Correctness

Lemma. Let C be a cycle in G consisting of 0 -cost edges. There exists a mincost arborescence rooted at r that has exactly one edge entering C.
Claim: that new tree T^{\star} is a mincost arborescence

1. $\operatorname{cost}\left(T^{*}\right) \leq \operatorname{cost}(T)$ since we add 0 -cost edges
2. T^{*} has exactly one edge entering each vertex
3. T^{*} has no cycles.

