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Graph Algorithms 

Algorithm Design and Analysis 

Victor Adamchik CS 15-451       Spring 2014 

Lecture 11 Feb 07, 2014 Carnegie Mellon University 

Plan: 
 
 DFS 
 Topological Sorting 
 Classification of Edges 
 Biconnected Components 

Graphs Traversal 

Visiting all vertices in a systematic order. 

 

for all v in V do visited[v] = false 

for all v in V do if !visited[v] traversal(v) 

 

   traversal(v)   { 

      visited[v] = true 

      for all w in adj(v)  

           do if !visited[w] traversal(w) 

   } 

O(V + E) 

Graphs Traversals 

•Depth-First Search (DFS) 
•Breadth-First Search (BFS) 
 
 

DFS uses a stack for backtracking. 

BFS uses a queue for bookkeeping 

 

 

Properties of DFS 

Property 1 

 DFS visits all the 
vertices in the connected 
component 

Property 2 

 The discovery 
edges labeled by DFS 
form a spanning tree of 
the connected component 
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Applications of DFS 

• Determine the connected components of 
a graph 

• Find cycles in a graph  

• Determine if a graph is bipartite. 

• Topologically sort in a directed graph 

• Find the biconnected components  
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Topological Sorting 

  B 

A 

C 

E 

D 
It's easy to see that 
such an ordering exists. 
Find a vertex with zero 
in-degree.  Print it, 
delete it from the 
graph, and repeat. Complexity-? 

PQ wrt in-degrees. O( E log V) 

Find an ordering of the vertices 
such that all edges go forward in 
the ordering. 

Topological Sorting with DFS 

  B 

A 

C 

E 

D 

DFS (v)  { 
   visited[v] = true 
   for all w in adj(v)  
      do if !visited[w]    
                DFS (w); 
   print(v); 
   } 

Do DFS; 
Reverse the order; 

Complexity-? 
O( E + V) 

Classification of Edges with DFS 

  B 

C C 

F 

Tree edge 

Back edge 

Cross edge 

Forward 
edge 

F 

A B C 
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Tree edges -  are edges in the DFS 

 

Classification of Edges 

Forward edges – edges (u,v) connecting u to a 
descendant v in a depth-first tree 

Back edges – edges (u,v) connecting u to an 
ancestor v in a depth-first tree 

 Cross edges – all other edges 

Theorem. 

A directed graph is acyclic iff a DFS yields  

no back edges. 

 

 

DAG 

Theorem. 

A directed graph is acyclic iff a DFS yields  

no back edges. 

 

 

DAG 

Proof. 

=>) by contrapositive. 

If there is a back edge, the graph is surely 
cyclic. 

 

 



3 

Theorem. 

A directed graph is acyclic iff a DFS yields  

no back edges. 

 

 Proof. 

<=) Suppose there is a cycle. 

Let v be the first vertex discovered in the 
cycle. Let (u, v) be the preceding edge in this 
cycle.  When we push v on the stack, no any 
vertices on the cycle were discovered yet. Thus, 
vertex u becomes a descendent of v in DFS. 
Therefore, (u, v) is  a back edge. 

 

 

for all v in V do num[v] = 0, stack[v]=false 

for all v in V do if num[v]==0 DFS(v) 

k = 0; 

 

   DFS(v)   {  

      k++; num[v] = k; stack[v]=true 

      for all w in adj(v)  do 

           if num[w]==0 DFS(w)            tree edge 

           else if num[w]  > num[v]         forward edge 

           else if stack[w]                     back edge 

           else                                       cross edge 

      stack [v]=false 

   }  

Biconnectivity 

B 

A 

C D 

E 

In many applications 
it’s not enough to 

know that a graph is 
connected, but “how 
well” it’s connected. 

Articulation points 

B 

A 

C D 

E 

A vertex is an 
articulation point if 

its removal (with 
edges) disconnect a 

graph. 

A connected graph is 
biconnected if it has 

no articulation 
points. 

If a graph is not biconnected, we 
define the biconnected 

components 

Biconnected Components 

C D 

Biconnected graphs 
are of great interest 
in communication and 

transportation 
networks B 

A 

C 

E 

If a graph is not 
biconnected, we define 

the biconnected 
components 

Find articulation points 

Fred Hacker’s algorithm: 

 

 
Delete a vertex 

Run DFS to see if a graph is connected 

Choose a new vertex. Repeat. 

 

 
Complexity: O(V (V+E)) 
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Biconnected Component 
Algorithm 

• It is based on a DFS 

• We assume that G is undirected and 
connected. 

• We cannot distinguish between forward 
and back edges 

• Also there are no cross edges (!) 

If for some child, there is no back  

edge going to an ancestor of u,  

then u is an articulation point. 

Find articulation point: 
an observation 

u We need to keep a track of  

back edges! 

We keep a track of back edge  

that goes higher in the tree. 

Find articulation point: 
next observation 

What about the root?  

Can it be an articulation point? 

DFS root must have two or more children 

Biconnected Component 
Algorithm 

• Run DFS 

• When we reach a dead end, we will back 
up. On the way up, we will discover back 
edges. They will tell us how far in the 
tree we could have gone. 

• These back edges indicate a cycle in the 
graph. All nodes in a cycle must be in the 
same component. 

Bookkeeping 

• For each vertex we will store two 
indexes. One is the counter of nodes we 
have visited so far dfs[v]. Second - the 
back index low[v]. 

• Definition. 
low[v] is the DFS number of the lowest numbered 

vertex x (i.e. highest in the tree) such that 
there is a back edge from some descendent of v 
to x. 

How to compute low[v]? 

• Back edge (u, v)  

       low[u] = min( low[u], dfs[v] ) 
If the edge goes to a lower dfs value then 

 the previous back edge, make this the new low. 

• Tree edge (u, v) 

        low[u] = min( low[u], low[v] ) 
Vertices u and v are in the same cycle. 
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How to test for articulation 
point? 

Using low[u] value we can test whether u  

is an articulation point. 

If for some child, there is no back edge going to 

 an ancestor of u, then u is an articulation point. 

If there was a back edge from child v,  

than low[v] < dfs[u].   

It follows, u is an articulation point iff it has a  

child v such that low[v]  >= dfs[u].   

        The Algorithm 

F G 

A B C 

H 

D 

I 

E 

1/1 2/2 3/3 

4/4 

Back edges 

5/5 5/2 

Backtracking 

4/2 

3/2 

Vertex labels  
dfs/low 

low(A) = dfs(B) 
Remove bicomponent  GFAB 

All edges are on a stack 

6/6 7/7 

8/8 9/9 8/1 

7/1 6/1 

2/1 

Store edges on a 
stack as you run DFS 

Theorem : Let G = (V, E) be a connected, 
undirected graph and S be a depth-first tree of G.  
Vertex x is an articulation point of G if and only if 
one of the following is true:  
 
       (1) x is the root of S and x has two or more 
children in S. 
            
       (2) x is not the root and for some child s of x, 
there is no back edge between any descendant of s 
(including s itself) and a proper ancestor of x.  

Theorem : Let G = (V, E) be a connected, 
undirected graph and S be a depth-first tree of G. 
Vertex x is an articulation point of G if and only if 
one of the following is true:  
       (1) x is the root of S and x has two or more 
children in S. 
            
Proof: Let two of the children be v and w. Imagine 
a subtree rooted at v and another one rooted at w. 
There is no an edge between these trees! This is 
because the DFS tree has no cross edges. Thus, 
any path must go through the root. If we delete 
the root, we disconnect the graph. 
Conversely, suppose the root has one child. Clearly, 
deleting the root won’t disconnect the graph. 
            

 
 
 
 
 
 
 
 
 
 
 
 
 
            

Theorem : Let G = (V, E) be a connected, 
undirected graph and S be a depth-first tree of G. 
Vertex x is an articulation point of G if and only if 
one of the following is true:             
       (2) x is not the root and for some child s of x, 
there is no back edge between any descendant of s 
(including s itself) and a proper ancestor of x.  

Proof: =>) If x is an articulation vertex, then 
removing it will disconnect child s from the parent 
of x. 
<=) If there is no such s, then x is not articulation 
point. To see this, suppose v0 is the parent and 
v1,…,vk are all children. By our assumption, there 
exists a path from vi to v0. They are in the same 
connected components. Removing x, won’t 
disconnect the graph. 
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