
1

Dynamic programming

Algorithm Design and Analysis

Victor Adamchik CS 15-451 Spring 2014

Lecture 5 Jan 24, 2014 Carnegie Mellon University

Chain matrix multiplication

Given a sequences of
matrices, determine the

order of multiplication that
minimize the number of

operations.

Chain matrix multiplication

M1 = [10x20]

M2 = [20x50]

M3 = [50x1]

M4 = [1x100]

Matrix multiplication is an associative but not a
commutative operation. There are several
choices:

M1*(M2*(M3*M4))

(M1*(M2*M3))*M4

Chain matrix multiplication

Multiplying an [m x n] matrix by an [n x p] matrix
takes m*n*p multiplications.

We are interested in multiplying more than 2
matrices, and we want to know the best order in
which to perform multiplications.

j dg ci df ch de c

j bg ai bf ah be a

jih

gfe

dc

ba

Brute Force Approach

1) Do all possible multiplicative orders

2) Choose the optimal

What is the complexity of this approach?

Chain matrix multiplication

Matrix multiplication
is associative and

corresponds to a full
binary tree

(A * (B * C)) * D

2

Chain matrix multiplication

What is the number of full binary
trees with n leaves?

…with four leaves

B(n) = # of full binary trees with n
leaves

B(n) = B(1) B(n-1) + B(2) B(n-2) + ... + B(n-1) B(1)

B(1) = 1

B(n) = C(n-1)

Catalan
numbers

0,1,...n ,
n

2n

1n

1
Cn

Brute Force Approach

This approach takes an exponential time…

n
2n

2n

2

n

4
n

(2n)

)(n!

(2n)!

n

2n

nn!

0,1,...n ,
n

2n

1n

1
Cn

Greedy Approach

M1 = [10x20]

M2 = [20x50]

M3 = [50x1]

M4 = [1x100]

There are several choices:

M1*(M2*(M3*M4))

(M1*(M2*M3))*M4

Greedy Approach

Repeatedly select the product that uses the
fewest operations.

….not clear why this will lead to an optimal
solution…

3

The main question in DP
is, what are the
subproblems?

Dynamic Programming Matrix Multiplication
M1*M2*…*Mn

 How do we define subproblems?

m(i, j) = min cost of Mi*Mi+1*…*Mj

m(i, i) = 0

Mi*Mi+1*…*Mj

We split that (i-j) product into two pieces

(Mi*Mi+1*…*Mk) * (Mk+1*…*Mj), i ≤ k < j

The total cost m(i,j) is given by

 m(i, k) + m(k+1, j) + combining step

m(i,j)=mink(m(i,k)+m(k+1,j)+comb_step)

What is the complexity of the combining step?

Combining step

These two pieces will eventually produce two
matrices

(Mi*Mi+1*…*Mk) * (Mk+1*…*Mj)

 ri-1 x rk rk x rj

It takes ri-1 rk rj multiplications to multiply two
matrices.

Chain matrix multiplication

How would you fill out the table?

Filling up the table

 m(i,i) = 0, i= 1, 2, …, n

 m(i,i+1) = ri-1 ri ri+1, i= 1, 2, …, n-1

 m(i, i+2) = …. i= 1, 2, …, n-2

m(i, j) = min cost of Mi*Mi+1*…*Mj

4

answer N 0 1
0
1

2 …

n-1

…

n-1 j

i

Filling up the table

m(i,i) = 0,

m(i,i+1) = ri-1 ri ri+1

m(i, i+2) = ….

m(i,j)=mink(m(i,k)+m(k+1,j)+comb_step)

Filling up the table

Set m(i,i) = 0 for all i.

for(s = 1; s < n; s++)

 for(i = 1; i <= n-s, i++)

 j = i + s;

 m(i,j)=mink(m(i,k)+m(k+1,j)+comb_step);

 (i ≤ k < j)

return m(1,n);

Runtime complexity

What is the complexity of this
algorithm?

Table size – O(n2)

 Cost per entry – O(n)

Total – O(n3)

m(i,j)=mink(m(i,k)+m(k+1,j)+comb_step)

Chain matrix multiplication

How would you recover the optimal
set of parentheses?

M1*M2*M3*M4

We have to memorize the split
marker indicating the best split:

this is the value k.

Basic Steps of DP

1. Define subproblems.
2. Write the recurrence relation.
3. Prove that an algorithm is correct.
4. Compute its runtime complexity.

Optimal Binary Search Tree

5

Optimal Binary Search Trees

• Given sequence k1 < k2 < ··· < kn of n sorted keys,
with a search probability pi for each key ki.

• Want to build a binary search tree (BST)
with minimum expected search cost.

• For key ki, search cost = depth(ki), where
depth of the root is 1.

• Actual cost = # of items examined.

Note the difference between this problem
and Huffman trees

n

1i
ii)depth(k pCost Expected

Example
Consider 5 keys with these search probabilities:

p1 = 0.25, p2 = 0.2, p3 = 0.05, p4 = 0.2, p5 = 0.3.

 k2

k1 k4

k3 k5

i depth depth(ki)·pi

1 2 0.5
2 1 0.2
3 3 0.15
4 2 0.4
5 3 0.9

Therefore, E[search cost] = 2.15.

Example

p1 = 0.25, p2 = 0.2, p3 = 0.05, p4 = 0.2, p5 = 0.3

i depth depth(ki)·pi

1 2 0.5
2 1 0.2
3 4 0.2
4 3 0.6
5 2 0.6

Therefore, E[search cost] = 2.1

k2

k1 k5

k4

k3

Example

Observations:

• Optimal BST may not have the smallest height.

• Optimal BST may not have highest-probability key at
the root.

Naïve algorithm: build by exhaustive checking

• Construct each n-node BST.

• For each assign keys and compute expected cost.

How many trees? Described by Catalan numbers

tress = O(4n)

Step 1: Optimal Substructure

One of the keys in ki, …,kj, must be the root

Left subtree of kr contains ki,...,kr 1.

Right subtree of kr contains kr+1, ...,kj.

kr

ki kr-1 kr+1 kj

To find an optimal solution for

k1, …, kn,

we must be able to find an optimal

solution for

ki, ..., kj

Step 2: Recurrence relation

kr

ki kr-1 kr+1 kj

Let Ci,j be the optimal cost for ki, …, kj

iii, pC

jiji,

ji,j1,r1ri,
jri

ji,

p...pw

w)C(C minC

6

Step 3: Correctness

kr

ki kr-1 kr+1 kj

Let T be an optimal subtree with kr be the root.

jiji,

ji,j1,r1ri,
jri

ji,

p...pw

w)C(CminC

TL TR

To prove the above formula,

we compute the tree cost directly

j

1rm
mTm

1r

im
mTmr)(kdepthp)(kdepthpp*1Cost(T)

Conclude the proof by changing

depthT -> 1+depthTL
 and depthT -> 1+depthTR

Step 3: Correctness
j

1rm
mTm

1r

im
mTmr)(kdepthp)(kdepthpp*1Cost(T)

j

1rm
mTm

1r

im
mTmji,)(kdepthp)(kdepthpw

RL

)Cost(T)Cost(Tw RLji,

j

1rm
mTm

1r

im
mTmr

))(kdepth(1p

))(kdepth(1pp

R

L

Step 3: Correctness

Finally, we need to prove that

Ci,j = OPTi,j

Case 2). Ci,j ≤ OPTi,j. Proof by induction

We computed in the previous slide that

Case 1). OPTi,j ≤ Ci,j . Trivial, just return a tree with

kr being the root.

j1,r1ri,ji, OPTOPTw
by IH

ji,OPT

j1,r1-ri,ji,ji, CCwC

Filling up the table

Compute w(i,j) = 0 for all 1 ≤ i ≤j ≤ n

Set m(i,i) = pi, for 1 ≤ i ≤ n

for(k = 1; k < n; k++)

 for(i = 1; i <= n-k, i++)

 j = i + k;

 m(i,j)=w(i,j) + minr(m(i,r-1)+m(r+1,j);

 (i ≤ r ≤ j)

return m(1,n);

Step 4: Runtime Complexity

kr

ki kr-1 kr+1 kj

iii, pC

with initial conditions

iifj 0,C ji,and

Table size – O(n2)

Cost per entry – O(n)

Total – O(n3)

jiji,

ji,j1,r1ri,
jri

ji,

p...pw

w)C(CminC

