Algorithm Design and Analysis

Victor Adamchik Lecture 5

Jan 24, 2014

CS 15-451 Spring 2014
Carnegie Mellon University

Dynamic programming

Chain matrix multiplication

 $M_1 = [10 \times 20]$

 $M_2 = [20 \times 50]$

 $M_3 = [50 \times 1]$

 $M_4 = [1 \times 100]$

Matrix multiplication is an associative but not a commutative operation. There are several choices:

 $M_1*(M_2*(M_3*M_4))$

 $(M_1*(M_2*M_3))*M_4$

Chain matrix multiplication

Multiplying an $[m \times n]$ matrix by an $[n \times p]$ matrix takes m*n*p multiplications.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix} = \begin{pmatrix} a & e+b & h & a & f+b & i & a & g+b & j \\ c & e+d & h & c & f+d & i & c & g+d & j \end{pmatrix}$$

We are interested in multiplying more than 2 matrices, and we want to know the best order in which to perform multiplications.

Brute Force Approach

- 1) Do all possible multiplicative orders
- 2) Choose the optimal

What is the complexity of this approach?

Chain matrix multiplication

Matrix multiplication is associative and corresponds to a <u>full</u> binary tree

B(n) = # of full binary trees with n leaves

B(n) = B(1) B(n-1) + B(2) B(n-2) + ... + B(n-1) B(1)B(1) = 1

$$C_n = \frac{1}{n+1} {2n \choose n}, n = 0,1,...$$

Catalan numbers

Brute Force Approach

This approach takes an exponential time...

$$C_n = \frac{1}{n+1} \binom{2n}{n}, n = 0,1,...$$

 $n \approx n^n$

$$\binom{2n}{n} = \frac{(2n)!}{(n!)^2} \approx \frac{(2n)^{2n}}{n^{2n}} = 4^n$$

Greedy Approach

Repeatedly select the product that uses the fewest operations.

....not clear why this will lead to an optimal solution...

Dynamic Programming The main question in DP is, what are the subproblems?

Matrix Multiplication
$$M_1*M_2*...*M_n$$

How do we define subproblems?

$$m(i, j) = min cost of M_i * M_{i+1} * ... * M_i$$

$$m(i, i) = 0$$

$M_{i}^{*}M_{i+1}^{*}...^{*}M_{i}$

We split that (i-j) product into two pieces

$$(M_i^*M_{i+1}^*...^*M_k)^*(M_{k+1}^*...^*M_i), i \le k < j$$

The total cost m(i,j) is given by m(i,k) + m(k+1,j) + combining step

 $m(i,j)=min_k(m(i,k)+m(k+1,j)+comb_step)$

What is the complexity of the combining step?

Combining step

These two pieces will eventually produce two matrices

$$(M_i^*M_{i+1}^*...^*M_k)^*(M_{k+1}^*...^*M_j)$$

 $r_{i-1} \times r_k$ $r_k \times r_i$

It takes $r_{i\text{-}1}\,r_k\,r_j$ multiplications to multiply two matrices.

Filling up the table

 $m(i, j) = min cost of M_i * M_{i+1} * ... * M_i$

$$m(i,i) = 0,$$
 i= 1, 2, ..., n

$$m(i,i+1) = r_{i-1} r_i r_{i+1}$$
 i= 1, 2, ..., n-1

Filling up the table one of the property of

Filling up the table

```
for(s = 1; s < n; s++)

for(i = 1; i <= n-s, i++)

j = i + s;

m(i,j)=min_k(m(i,k)+m(k+1,j)+comb\_step);

(i \le k < j)

return m(1,n);
```

Set m(i,i) = 0 for all i.

Basic Steps of DP

- 1. Define subproblems.
- 2. Write the recurrence relation.
- 3. Prove that an algorithm is correct.
- 4. Compute its runtime complexity.

Optimal Binary Search Trees

- Given sequence $k_1 < k_2 < ... < k_n$ of n sorted keys, with a search probability p_i for each key k_i .
- Want to build a binary search tree (BST) with minimum expected search cost.
- For key k_i, search cost = depth(k_i), where depth of the root is 1.
- · Actual cost = # of items examined.

Expected Cost =
$$\sum_{i=1}^{n} p_i depth(k_i)$$

Note the difference between this problem and Huffman trees

Example

Consider 5 keys with these search probabilities: $p_1 = 0.25$, $p_2 = 0.2$, $p_3 = 0.05$, $p_4 = 0.2$, $p_5 = 0.3$.

Therefore, E[search cost] = 2.15.

Example

 $p_1 = 0.25$, $p_2 = 0.2$, $p_3 = 0.05$, $p_4 = 0.2$, $p_5 = 0.3$

Therefore, E[search cost] = 2.1

Example

Observations:

- · Optimal BST may not have the smallest height.
- Optimal BST may not have highest-probability key at the root.

Naïve algorithm: build by exhaustive checking

- · Construct each n-node BST.
- · For each assign keys and compute expected cost.

How many trees?

Described by Catalan numbers

tress = $O(4^n)$

Step 1: Optimal Substructure

To find an optimal solution for

$$k_1, ..., k_n$$

we must be able to find an optimal solution for

$$k_{i}, ..., k_{i}$$

One of the keys in k_i , ..., k_j , must be the root Left subtree of k_r contains k_i ,..., k_{r-1} . Right subtree of k_r contains k_r+1 , ..., k_i .

Step 2: Recurrence relation

Let $C_{i,j}$ be the optimal cost for $\mathbf{k}_i,...,\mathbf{k}_j$

$$\boldsymbol{\mathcal{C}}_{i,j} = \underset{i \leq r \leq j}{\text{min}} \; \big(\boldsymbol{\mathcal{C}}_{i,r-1} + \boldsymbol{\mathcal{C}}_{r+1,j}\big) + \boldsymbol{w}_{i,j}$$

Step 3: Correctness

Let T be an optimal subtree with $k_{\rm r}$ be the root.

$$\boldsymbol{C}_{i,j} = \min_{i \leq r \leq j} (\boldsymbol{C}_{i,r-1} + \boldsymbol{C}_{r+1,j}) + \boldsymbol{w}_{i,j}$$

$$\boldsymbol{w}_{i,j} = \boldsymbol{p}_i + ... + \boldsymbol{p}_j$$

To prove the above formula,

we compute the tree cost directly

$$\textit{Cost}(T) = 1 * p_r + \sum_{m=i}^{r-1} p_m \textit{depth}_T(\textbf{k}_m) + \sum_{m=r+1}^{j} p_m \textit{depth}_T(\textbf{k}_m)$$

Conclude the proof by changing

$$depth_T \rightarrow 1 + depth_{T_1}$$
 and $depth_T \rightarrow 1 + depth_{T_D}$

Step 3: Correctness

$$\begin{split} \textit{Cost}(T) &= 1 * p_r + \sum_{m=i}^{r-1} p_m depth_T(k_m) + \sum_{m=r+1}^{j} p_m depth_T(k_m) \\ &= p_r + \sum_{m=i}^{r-1} p_m (1 + depth_{T_L}(k_m)) + \\ & \sum_{m=r+1}^{j} p_m (1 + depth_{T_R}(k_m)) \\ &= w_{i,j} + \sum_{m=i}^{r-1} p_m depth_{T_L}(k_m) + \sum_{m=r+1}^{j} p_m depth_{T_R}(k_m) \\ &= w_{i,j} + \textit{Cost}(T_L) + \textit{Cost}(T_R) \end{split}$$

Step 3: Correctness

Finally, we need to prove that

$$C_{i,j} = OPT_{i,j}$$

Case 1). $\mathsf{OPT}_{i,j} \leq C_{i,j}$. Trivial, just return a tree with k_r being the root.

Case 2). $C_{i,j} \leq OPT_{i,j}$. Proof by induction

We computed in the previous slide that

$$C_{i,j} = W_{i,j} + C_{i,r-1} + C_{r+1,j} \quad \leq W_{i,j} + OPT_{i,r-1} + OPT_{r+1,j}$$

$$= OPT_{i,i}$$

Filling up the table

Compute w(i,j) = 0 for all $1 \le i \le j \le n$ Set $m(i,i) = p_i$, for $1 \le i \le n$

for(k = 1; k < n; k++)
for(i = 1; i <= n-k, i++)

$$j = i + k$$
;
 $m(i,j)=w(i,j) + min_r(m(i,r-1)+m(r+1,j)$;
 $(i \le r \le j)$

return m(1,n);

Step 4: Runtime Complexity

$$\textit{C}_{i,j} = \underset{i \leq r \leq j}{\text{min}} (\textit{C}_{i,r-1} + \textit{C}_{r+1,j}) + \textit{w}_{i,j}$$

$$\boldsymbol{w}_{i,j} = \boldsymbol{p}_i + ... + \boldsymbol{p}_j$$

with initial conditions

$$C_{i,i} = p_i$$
 and $C_{i,j} = 0$, if $j < i$

Table size - O(n2)

Total - O(n3)

Cost per entry - O(n)