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Lecture 5 Jan 24, 2014 Carnegie Mellon University 

Chain matrix multiplication 
 

Given a sequences of 
matrices, determine the 

order of multiplication that 
minimize the number of 

operations. 

Chain matrix multiplication 

M1 = [10x20] 

M2 = [20x50] 

M3 = [50x1] 

M4 = [1x100] 

Matrix multiplication is an associative but not a 
commutative operation. There are several 
choices: 

M1*(M2*(M3*M4)) 

 

(M1*(M2*M3))*M4 

 

Chain matrix multiplication 

Multiplying an [m x n] matrix by an [n x p] matrix 
takes m*n*p multiplications. 

 

 

We are interested in multiplying more than 2 
matrices, and we want to know the best order in 
which to perform multiplications. 
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Brute Force Approach 

 
1) Do all possible multiplicative orders 

 

2)  Choose the optimal 

 

 

What is the complexity of this approach? 

Chain matrix multiplication 

Matrix multiplication 
is associative and 

corresponds to a full 
binary tree 

(A * ( B * C)) * D 
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Chain matrix multiplication 

 
What is the number of full binary 
trees with n leaves?  

    

…with four leaves 

B(n) = # of full binary trees with n 
leaves 

B(n) = B(1) B(n-1) + B(2) B(n-2) + ... + B(n-1) B(1)  

B(1) = 1 

 
  

B(n) = C(n-1)  

 

 
 

Catalan 
numbers 
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Brute Force Approach 

This approach takes an exponential time… 
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Greedy Approach 

M1 = [10x20] 

M2 = [20x50] 

M3 = [50x1] 

M4 = [1x100] 

There are several choices: 

M1*(M2*(M3*M4)) 

 

(M1*(M2*M3))*M4 

 

Greedy Approach 

Repeatedly select the product that uses the 
fewest operations. 

….not clear why this will lead to an optimal 
solution… 
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The main question in DP 
is, what are the 
subproblems?  

Dynamic Programming Matrix Multiplication 
M1*M2*…*Mn 

  

 How do we define subproblems? 

 

m(i, j) = min cost of Mi*Mi+1*…*Mj 

 

 

 

m(i, i) = 0 

 

 

Mi*Mi+1*…*Mj 

We split that (i-j) product into two pieces  

 

(Mi*Mi+1*…*Mk )  * (Mk+1*…*Mj),     i ≤ k < j 
 

The total cost m(i,j) is given by 

 m(i, k) + m(k+1, j) + combining step 

 

m(i,j)=mink(m(i,k)+m(k+1,j)+comb_step) 

 

What is the complexity of the combining step? 

Combining step 

These two pieces will eventually produce two 
matrices 

 

(Mi*Mi+1*…*Mk )  * (Mk+1*…*Mj) 

                        ri-1 x rk               rk x rj 

 

It takes ri-1 rk rj multiplications to multiply two 
matrices. 

 

Chain matrix multiplication 

 

How would you fill out the table? 
 
    

Filling up the table 

 

   m(i,i) = 0,                   i= 1, 2, …, n 

 

   m(i,i+1) = ri-1 ri ri+1,         i= 1, 2, …, n-1 

 

   m(i, i+2) = ….               i= 1, 2, …, n-2 

 

m(i, j) = min cost of Mi*Mi+1*…*Mj 
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Filling up the table 

m(i,i) = 0,                    

m(i,i+1) = ri-1 ri ri+1 

m(i, i+2) = ….                

 

m(i,j)=mink(m(i,k)+m(k+1,j)+comb_step) 

Filling up the table 

Set m(i,i) = 0 for all i. 

 

for(s = 1; s < n; s++) 

   for(i = 1; i <= n-s, i++) 

      j = i + s; 

      m(i,j)=mink(m(i,k)+m(k+1,j)+comb_step); 

              (i ≤ k < j) 

return m(1,n); 

Runtime complexity 

What is the complexity of this 
algorithm?  

    

Table size – O(n2) 

 Cost per entry – O(n) 

Total – O(n3) 

m(i,j)=mink(m(i,k)+m(k+1,j)+comb_step) 

Chain matrix multiplication 

How would you recover the optimal 
set of parentheses? 

M1*M2*M3*M4 

We have to memorize the split 
marker indicating the best split: 

this is the value k. 

Basic Steps of DP 

1. Define subproblems. 
2. Write the recurrence relation. 
3. Prove that an algorithm is correct. 
4. Compute its runtime complexity. 

Optimal Binary Search Tree 
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Optimal Binary Search Trees 

• Given sequence  k1 < k2 < ··· < kn of n sorted keys,  
with a search probability pi for each key ki. 

• Want to build a binary search tree (BST)  
with minimum expected search cost. 

•  For key ki, search cost = depth(ki), where 
depth of the root is 1. 

• Actual cost = # of items examined. 
 

 

Note the difference between this problem  
and Huffman trees 

n

1i
ii )depth(k pCost Expected

Example 
Consider 5 keys with these search probabilities: 

p1 = 0.25, p2 = 0.2, p3 = 0.05, p4 = 0.2, p5 = 0.3. 

 k2 

k1 k4 

k3 k5 

i    depth   depth(ki)·pi 

1       2  0.5 
2       1 0.2 
3       3 0.15 
4       2 0.4 
5       3  0.9  

Therefore, E[search cost] = 2.15. 

Example 

p1 = 0.25, p2 = 0.2, p3 = 0.05, p4 = 0.2, p5 = 0.3 

 
i   depth     depth(ki)·pi 

1       2 0.5 
2       1 0.2 
3       4 0.2 
4       3 0.6 
5       2  0.6 

Therefore, E[search cost] = 2.1 

k2 

k1 k5 

k4 

k3 

Example 

Observations: 

• Optimal BST may not have the smallest height. 

• Optimal BST may not have highest-probability key at 
the root. 

 
Naïve algorithm: build by exhaustive checking 

• Construct each n-node BST. 

• For each assign keys and compute expected cost. 

How many trees? Described by Catalan numbers 

# tress = O(4n) 

Step 1: Optimal Substructure 

One of the keys in ki, …,kj, must be the root 

Left subtree of kr contains ki,...,kr 1. 

Right subtree of kr contains kr+1, ...,kj. 

kr 

ki kr-1 kr+1 kj 

To find an optimal solution for 

k1, …, kn,  

we must be able to find an optimal  

solution for 

ki, ..., kj 

Step 2: Recurrence relation 

kr 

ki kr-1 kr+1 kj 

Let Ci,j be the optimal cost for ki, …, kj 

iii, pC
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Step 3: Correctness 

kr 

ki kr-1 kr+1 kj 

Let T be an optimal subtree with kr be the root.  

jiji,

ji,j1,r1ri,
jri

ji,

p...pw

w)C(CminC

TL TR 

To prove the above formula,  

we compute the tree cost directly 

j
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Conclude the proof by changing  

depthT -> 1+depthTL
 and depthT -> 1+depthTR 

Step 3: Correctness 
j
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Step 3: Correctness 

Finally, we need to prove that 

Ci,j = OPTi,j 

Case 2). Ci,j ≤ OPTi,j. Proof by induction 

We computed in the previous slide that 

Case 1). OPTi,j ≤ Ci,j . Trivial, just return a tree with  

kr being the root.  

j1,r1ri,ji, OPTOPTw
by IH 

ji,OPT 

j1,r1-ri,ji,ji, CCwC

Filling up the table 

Compute w(i,j) = 0 for all 1 ≤ i ≤j ≤ n 

Set m(i,i) = pi, for 1 ≤ i ≤ n 

 

for(k = 1; k < n; k++) 

   for(i = 1; i <= n-k, i++) 

      j = i + k; 

      m(i,j)=w(i,j) + minr(m(i,r-1)+m(r+1,j); 

                          (i ≤ r ≤ j) 

return m(1,n); 

Step 4: Runtime Complexity 

kr 

ki kr-1 kr+1 kj 

iii, pC

with initial conditions 

iifj 0,C ji,and 

Table size – O(n2) 

Cost per entry – O(n) 

Total – O(n3) 
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