
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Fall 2019

Lecture 25:

Under the Hood, Part 1:
Implementing Message Passing

 CMU 15-418/618, Fall 2019

Today’s Theme

2

 CMU 15-418/618, Fall 2019

Message passing model (abstraction)

Thread 1 address space

Variable X

▪ Threads operate within their own private address spaces

▪ Threads communicate by sending/receiving messages
- send: specifies recipient, buffer to be transmitted, and optional message identifier (“tag”)
- receive: sender, specifies buffer to store data, and optional message identifier

- Sending messages is the only way to exchange data between threads 1 and 2

3

x

Thread 2 address space

Variable X

Y

Illustration adopted from Culler, Singh, Gupta

send(X,	2,	my_msg_id)	

semantics: send contexts of local
variable X as message to thread 2
and tag message with the id
“my_msg_id”

recv(Y,	1,	my_msg_id)	

semantics: receive message with id
“my_msg_id” from thread 1 and
store contents in local variable Y

 CMU 15-418/618, Fall 2019

Message passing systems
▪ Popular software library: MPI (message passing interface)

▪ Hardware need not implement system-wide loads and stores to execute message
passing programs (need only be able to communicate messages)
- Can connect commodity systems together to form large parallel machine

(message passing is a programming model for clusters)

4

IBM Blue Gene/P Supercomputer

Cluster of workstations
(Infiniband network)

Image credit: IBM

 CMU 15-418/618, Fall 2019

Network Transaction

▪ One-way transfer of information from a source output buffer to a
destination input buffer
- causes some action at the destination

- e.g., deposit data, state change, reply
- occurrence is not directly visible at source

5

Interconnection Network

Source Node

Output Buffer

Destination Node

Input Buffer

Serialized Message

 CMU 15-418/618, Fall 2019

Shared Address Space Abstraction

▪ Fundamentally a two-way request/response protocol
- writes have an acknowledgement

6

Read request

Read response

Read request

Read response

Memory access

Source Destination
Load	r1	<—	Address

Wait

Time

(1) Initiate memory access
(2) Address translation
(3) Local/remote check
(4) Request transaction

(5) Remote memory access

(6) Reply transaction

(7) Complete memory access

 CMU 15-418/618, Fall 2019

Key Properties of SAS Abstraction
▪ Source and destination addresses are specified by source of the request

- a degree of logical coupling and trust

▪ No storage logically “outside the application address space(s)”

- may employ temporary buffers for transport

▪ Operations are fundamentally request-response

▪ Remote operation can be performed on remote memory

- logically does not require intervention of the remote processor

7

 CMU 15-418/618, Fall 2019

Message Passing Implementation Options
Synchronous:

- Send completes after matching receive and source data sent
- Receive completes after data transfer complete from matching send

Asynchronous:
- Send completes after send buffer may be reused

8

 CMU 15-418/618, Fall 2019

Synchronous Message Passing

▪ Data is not transferred until target address is known
▪ Limits contention and buffering at the destination

9

Send-ready request

Tag check

Source Destination

Send(Pdest,	local	VA,	len)

Wait

Time

(1) Initiate send
(2) Address translation
(3) Local/remote check
(4) Send-ready request

(5) Remote check for posted
receive (assume success)

(6) Reply transaction

(7) Bulk data transfer
 Source VA —> Dest VA

Receive(Psrc,	local	VA,	len)

Receive-ready reply

Data-transfer request

▪ Performance?

 CMU 15-418/618, Fall 2019

Asynchronous Message Passing: Optimistic

▪ Good news:
▪ source does not stall waiting for the destination to receive

10

Tag Match
Allocate Buffer

Source Destination

Send(Pdest,	local	VA,	len)

Time

(1) Initiate send
(2) Address translation
(3) Local/remote check
(4) Send data

(5) Remote check for posted
receive; on fail, allocate data
buffer

Receive(Psrc,	local	VA,	len)

Data-transfer request

▪ Bad news:
▪ storage is required within the message layer (?)

 CMU 15-418/618, Fall 2019

Asynchronous Message Passing: Conservative

▪ Where is the buffering?

11

Source Destination

Send(Pdest,	local	VA,	len)(1) Initiate send
(2) Address translation
(3) Local/remote check
(4) Send-ready request

(5) Remote check for posted
receive (assume fail); record
send-ready

(6) Receive-ready request

(7) Bulk data reply
 Source VA —> Dest VA

Send-ready request

Tag match

Resume computing

Time

Receive-ready request

Data-transfer reply

Receive(Psrc,	local	VA,	len)

▪ Contention control? Receiver-initiated protocol?
▪ What about short messages?

 CMU 15-418/618, Fall 2019

Key Features of Message Passing Abstraction

▪ Source knows send address, destination knows receive address
- after handshake they both know both

▪ Arbitrary storage “outside of the local address spaces”
- may post many sends before any receives

▪ Fundamentally a 3-phase transaction

12

Interconnection Network

Source Node

Send Address

Destination Node

Receive Address

Message

 CMU 15-418/618, Fall 2019

Credit-Based Async Message Passing
▪ Motivation:

- Optimistic is good for short messages (lower latency), BUT
- Conservative is safer in general (avoid buffer overflow)

▪ Basic Idea (A Hybrid Approach):
- pre-allocate limited amount of space (“credit”) per sender
- if sender knows it has sufficient credit at a receiver:

- it can go ahead and send the message optimistically
- otherwise, send the message conservatively

▪ Tracking credit limit:
- decreased upon send; increases piggybacked with msgs

13

 CMU 15-418/618, Fall 2019

Challenge: Avoiding Fetch Deadlock
▪ Must continue accepting messages, even when cannot source msgs

- what if incoming transaction is a request?
- each may generate a response, which cannot be sent!
- what happens when internal buffering is full?

Approaches:
1. Logically independent request/reply networks

- physical networks
- virtual channels with separate input/output queues

2. Bound requests and reserve input buffer space
- K(P-1) requests + K responses per node
- service discipline to avoid fetch deadlock?

3. NACK on input buffer full
- NACK delivery?

14

 CMU 15-418/618, Fall 2019

Implementation Challenges: Big Picture
▪ One-way transfer of information
▪ No global knowledge, nor global control

- barriers, scans, reduce, global-OR give fuzzy global state
▪ Very large number of concurrent transactions
▪ Management of input buffer resources

- many sources can issue a request and over-commit destination
before any see the effect

▪ Latency is large enough that you are tempted to “take risks”
- e.g., optimistic protocols; large transfers; dynamic allocation

15

