
Assigned: Sat, Oct 12, 2019 12:01 AM
Due: Fri, Oct 25 2019 11:59 PM
Last Day to Handin: Mon, Oct 28 2019 11:59 PM

1 Overview

Before you begin, please take the time to review the course policy on academic
integrity:

Academic Integrity Policy

Download the Assignment 4 starter code from the course Github using:

$ git clone https://github.com/cmu15418/assignment4-nbody

1.1 Assignment Objectives

In the previous assignment, you implemented a parallel n-body simulation using
shared-memory parallelism with the support of the OpenMP library. In this
assignment, you will again implement a parallel n-body simulation using an al-
ternative parallel programming model—message passing. As you already know
from the lectures, unlike shared-memory parallelism where threads communi-
cate by reading and writing shared memory, in the message passing model the
processes do not have access to shared memory, and they can communicate only
by sending messages to each other.

There are many languages that include message passing as their central feature,
such as Erlang and Go. In this assignment, however, we will use Message Passing
Interface (MPI), a portable message passing standard that defines syntax and
semantics of a set of routines for parallel programming. There are multiple high-
performance implementations of MPI, of which we will use Open MPI. Despite
the similarity in their names, Open MPI and OpenMP are different libraries with
different objectives. It is typical to combine OpenMP and OpenMPI within a
single application for intra- and inter-machine parallelism, respectively.

1

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-s18/www/academicintegrity.html
https://github.com/cmu15418/assignment4-nbody

You will be given a sequential implementation of the n-body simulation that
you will need to parallelize using MPI primitives. The assignment will help
you to understand the advantages and the limitations of the two approaches
to parallelism—shared-memory and message passing—and will give you an idea
where one approach is preferable to the other.

1.2 Machines

You will start by using GHC machines for this assignment. Please prepend
/usr/local/depot/openmpi/bin to your PATH environment variable to access
MPI tools. You will use mpirun command to run your MPI binary, which
launch multiple instances of your program on the same host. For example, the
following command launches 4 instances of the echo tool, with each process tied
to a different core:

$ mpirun -n 4 echo hi

hi

hi

hi

hi

These processes do not share address space and can communicate with each
other using message passing over the loopback network interface. Unlike echo

tool, your program will use MPI calls to communicate with its instances.

Although MPI is usually used on a large cluster for massive computations, it
is typical to develop an MPI application on a multicore machine and observe
speedup there before trying it on a cluster. Early next week, we will post
updates on Piazza with instructions on running on the latedays cluster.

1.3 Resources

If you do not have an experience with MPI, we strongly recommend going
through the MPI tutorial at https://computing.llnl.gov/tutorials/mpi/ before
you attempt doing the assignment. Learn how to compile and run MPI binaries
on the same host and across the nodes of a cluster. Study, compile, and run at
least a few of the exercises (Hello World, Array Decomposition, etc.) listed at
https://computing.llnl.gov/tutorials/mpi/exercise.html.

2 Starter Code

We provide you with a sequential implementation of the nbody simulation. It is
based on the code of the previous assignment, however, the code was rearranged
to simplify your MPI implementation. More specifically, you will need to make
changes to the file src/mpi-simulator.cpp to complete the normal portion of
this assignment. If you choose to do the extra credit problem, you may need

2

https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/mpi/exercise.html

to modify src/quad-tree.* as well. You should not need to modify any other
file.

Compile the provided code by typing make. You can determine the performance
of the resulting binary, nbody-release, by running it using ./checker.pl. You
will notice that some lines are being printed multiple times. This is because the
checker script runs the binary with mpirun -n 8—you should take some time to
study the checker script—and each instance prints out details about its runtime.
In your final MPI implementation only a single instance should produce such
output.

Initially, you should observe similar times for the reference sequential implemen-
tation and the two MPI implementations, one of which is expected to avoid work
imbalance. Once you complete the tasks described below, you should observe
speedup with the MPI implementations.

3 Your Tasks

Since you are already familiar with the problem definition, we jump straight
into the tasks for this assignment. Each item in the following list is a task that
you need to complete, by answering a question in the write-up and/or writing
code.

Task 1 (20 points) You need to provide an answer to this question in your
write up. Although you are not expected to provide code, you may need to
attempt an implementation to get to the answer.

One of the tasks in the previous assignment was to parallelize building a quad
tree. Think about how you would parallelize the recursive buildQuadTree func-
tion using MPI. You will find that it is hard to do, but can you pinpoint what
makes it hard compared to OpenMP? It may help you to know that the difficulty
is not specific to buildQuadTree function, but to recursive functions in general,
which is why recursive algorithm implementations in MPI are rare.

Task 2 (10 points) Even if you somehow manage to implement a recur-
sive buildQuadTree function using MPI, you will find it not as efficient as
the OpenMP implementation, especially given that the tree building is not
compute-intensive. Can you guess why an MPI implementation will not be
as efficient as an OpenMP implementation? Please provide your answer in your
write-up.

Extra Credit (30 points) Thinking about the above questions will help you
realize that parallelizing buildQuadTree using MPI is not a good idea—at least,
not in its current form. It can, however, be parallelized more easily if converted
to an iterative form. Provide a parallel implementation of buildQuadTree using
MPI by modifying src/quad-tree.*. You are free to redesign the algorithm
however you see fit. Briefly describe your algorithm in your write-up.

3

Since MPI has communication overhead and building the quad tree is not very
compute-intensive, we are not going to judge your solution on speedup, but on
whether you took a reasonable approach to parallelization.

Task 3 (50 points) In this task, you will parallelize the simulation step, which
is a straightforward application of MPI primitives. If you choose to do the extra
credit task above, please use your parallelized buildQuadTree implementation
for this task. You should work in src/mpi-simulator.cpp for this task.

Task 4 (20 points) In the previous assignment you used dynamic scheduling
in OpenMP to deal with the work imbalance in corner images. In MPI, you
cannot avoid work imbalance with a single keyword as you did in OpenMP, how-
ever, there are other solutions. Think about how you can avoid work imbalance
in your MPI implementation and briefly describe your strategy in your write-up
and provide the corresponding implementation in src/mpi-simulator.cpp.

The checker script runs your binary with -mpilb option to invoke the load-
balancing version of your code. Using this option sets the options.simulatorType
to SimulatorType::MPLIB. In your code, you can condition on this to branch
into the load-balancing version of your code.

4 Evaluation

You will be evaluated both on correctness and speed; an implementation that is
not correct will not receive any points, so ensure that correctness does not fail.
After making your MPI changes to the code, make sure to adjust the
timing code so that it includes the communication primitives. We will
read your code to ensure you are timing correctly. Your solution to task
3 should achieve 3-5× speedup over the reference sequential implementation
across scenes. For corner-50000 scene, your solution to task 4 should reliably
achieve 20-40% higher speedup than your solution to task 3, over the reference
sequential implementation.

For example, Listing 1 is a sample output from the reference implementation
where MPI-LB shows the load balancing MPI solution. It is possible that the
overhead of your load-balancing solution leads to slowdown for cases where there
is no load imbalance, as you see here with repeat-10000 scene. This will not
result in point deduction.

Listing 1: Sample Reference solution results

| Scene Name | MPI Speedup | MPI-LB Speedup |

| random-10000 | 4.523137 | 4.415653 |

| random-50000 | 4.193441 | 4.186013 |

| corner-10000 | 3.296542 | 4.354282 |

| corner-50000 | 3.620516 | 4.325133 |

| repeat-10000 | 4.905386 | 4.160051 |

4

5 Hand-in Instructions

You will submit your code via Autolab and your report via Gradescope. For
the code, you will be submitting all C++ header and source files in the src
folder.

1. Submitting your code:

(a) If you are working with a partner, form a group on Autolab. Do
this before submitting your assignment. One submission per group
is sufficient.

(b) Make sure all of your code is compilable and runnable. We should be
able to simply run make, then execute ./checker.pl. Please remove
excessive print statements, if they were added.

(c) Run the command “make handin.tar.” This will run “make clean”
and then create an archive of any C++ source code in src.

(d) Submit the file handin.tar to Autolab.

2. Submitting your writeup:

(a) Please upload your report as file report.pdf to Gradescope, one sub-
mission per team, and select the appropriate pages for each part of
the assignment. After submitting, you will be able to add your team-
mate using the add group members button on the top right of your
submission.

5

	Overview
	Assignment Objectives
	Machines
	Resources

	Starter Code
	Your Tasks
	Evaluation
	Hand-in Instructions

