
15-418/618, Fall 2018
Assignment 1

Exploring Multi-Core and SIMD Parallelism

Event Registered students Waitlist students
Assigned: Wed., Aug. 29 Wed., Aug. 29
Due: Mon., Sept. 10, 11:59 pm Wed., Sept. 5, 11:59 pm
Last day to handin: Wed., Sept. 12 Wed., Sept. 5

Overview

In this assignment you will modify and experiment with code designed to exploit the two main forms of
parallelism available on modern processors: the multiple cores that can execute programs independently, and
the SIMD vector units that allow each processor to perform some of its arithmetic and memory operations
on vectors of data. (You will see some of the effects of Intel hyperthreading, as well, where each core can
execute the instruction streams of two programs simultaneously.)

You will also gain experience measuring and reasoning about the performance of parallel programs, a chal-
lenging, but important, skill you will use throughout this class. This assignment involves only a small
amount of programming, but a lot of analysis!

This is an individual project. All handins are electronic. Your submission will consist of the code files you
have modified, as well as a single document reporting your findings on the 5 problems described below. You
may use any document preparation system you choose, but the final result must be stored as a single file in
PDF format, named report.pdf. Make sure the report includes your name and Andrew Id. More details
on how to submit this information is provided at the end of this document.

Before you begin, please take the time to review the course policy on academic integrity at:

http://www.cs.cmu.edu/∼418/academicintegrity.html

Getting started

You will need to run code on the machines in the Gates cluster for this assignment. Host names for these
machines are ghcX.ghc.andrew.cmu.edu, where X is between 26 and 46. These machines contain

1

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-f18/www/academicintegrity.html


eight 3.2 GHz Intel Core i7 processors (although dynamic frequency scaling can take them to 3.8 GHz
when the chip decides it is useful and possible to do so). Each core in the processor can execute AVX2
vector instructions, supporting simultaneous execution of the same operation on multiple data values (8 in
the case of single-precision data). For the curious, a complete specification for this CPU can be found at
https://ark.intel.com/products/92985/Intel-Xeon-Processor-E5-1660-v4-20M-Cache-3 20-GHz.
You can log into these machines in the cluster, or you can reach them via ssh.

We will grade your analysis of code run on the Gates machines; however for your own interest, you may
also want to run these programs on other machines. To do this, you will first need to install the Intel SPMD
Program Compiler (ISPC) available at: http://ispc.github.com/. Feel free to include your findings
from running code on other machines in your report as well, just be very clear in your report to describe the
machine(s) you used.

ISPC is needed to compile many of the programs used in this assignment. ISPC is currently installed on the
Gates machines in the directory /usr/local/depot/ispc-v1.9.1-linux/. You will need to add
this directory to your system path.

We will distribute the assignment starter code via a repository hosted on Github. Clone the assignment 1
starter code using:

git clone https://github.com/cmu15418/asst1-f18.git

1 Problem 1: Parallel Fractal Generation Using Pthreads (15 points)

Build and run the code in the prog1_mandelbrot_threads directory of the Assignment 1 code base.
This program produces the image file mandelbrot-serial.ppm, which is a visualization of a fa-
mous set of complex numbers called the Mandelbrot set. As you can see in the images below, the re-
sult is a familiar and beautiful fractal. Each pixel in the image corresponds to a value in the complex
plane, and the brightness of each pixel is proportional to the computational cost of determining whether
the value is contained in the Mandelbrot set—white pixels required the maximum (256) number of it-
erations, black ones only a few iterations, and gray pixels were somewhere in between. (See function
mandel() defined in mandelbrot.cpp.) You can learn more about the definition of the Mandelbrot
set at http://en.wikipedia.org/wiki/Mandelbrot set.

Use the command option “--view V ” for V between 1 and 6 to get the different images. You can click
the links below to see the different images on a browser. Take the time to do this—the images are quite
striking.

2

https://ark.intel.com/products/92985/Intel-Xeon-Processor-E5-1660-v4-20M-Cache-3_20-GHz
http://ispc.github.com/
http://en.wikipedia.org/wiki/Mandelbrot_set


View 1 View 2 View 3
1× magnification 66× magnification 50× magnification

View 4 View 5 View 6
50× magnification 50× magnification 500× magnification

Your job is to parallelize the computation of the images using Pthreads. The commandline option “--threads T ”
specifies that the computation is to be partitioned over T threads. In function mandelbrotThread(),
located in mandelbrot.cpp, the main application thread creates T−1 additional thread using pthread_create().
It waits for these threads to complete using pthread_join(). Currently, neither the launched threads
nor the main thread do any computation, and so the program generates an error message. You should add
code to the workerThreadStart() function to accomplish this task. You will not need to use of any
other Pthread API calls in this assignment.

What you need to do:

1. Modify the code in mandelbrot.cpp to parallelize the Mandelbrot generation using two cores.
Specifically, compute the top half of the image in thread 0, and the bottom half of the image in thread
1. This type of problem decomposition is referred to as spatial decomposition since different spatial
regions of the image are computed by different processors.

2. Extend your code to utilize T threads for T ∈ {2, 4, 8, 16}, partitioning the image generation work
into the appropriate number of horizontal blocks. You will need to modify the code in function
workerThreadStart, to partition the work over the threads.

Note that the processor only has 8 cores, but each core supports two hyper-threads. Also, the images
have 900 rows, and so you must handle the case where the number of rows is not evenly divisible
by the number of threads. In your write-up, produce a graph of speedup compared to the reference
sequential implementation as a function of the number of cores used for view 1. Is speedup linear in
the number of cores used? In your writeup hypothesize why this is (or is not) the case? (You may
also wish to produce a graph for some of the other views to help you come up with an answer.)

3

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-f18/www/assignment_writeups/asst1/figs/mb1.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-f18/www/assignment_writeups/asst1/figs/mb2.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-f18/www/assignment_writeups/asst1/figs/mb3.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-f18/www/assignment_writeups/asst1/figs/mb4.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-f18/www/assignment_writeups/asst1/figs/mb5.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-f18/www/assignment_writeups/asst1/figs/mb6.pdf


3. To confirm (or disprove) your hypothesis, measure the amount of time each thread requires to com-
plete its work by inserting timing code at the beginning and end of workerThreadStart(). How do your
measurements explain the speedup graph you previously created?

4. Modify the mapping of work to threads to improve speedup to almost 8× on the first two views
of the Mandelbrot set (if you’re close to 8× that’s fine, don’t sweat it). You may not use any syn-
chronization between threads. We expect you to come up with a single work decomposition policy
that will work well for all thread counts; hard coding a solution specific to each configuration is not
allowed! (Hint: There is a very simple static assignment that will achieve this goal, and no commu-
nication/synchronization among threads is necessary.) In your writeup, describe your approach and
report the final 16-thread speedup obtained. Also comment on the difference in scaling behavior from
4 to 8 threads versus 8 to 16 threads.

What you need to turn in:

1. Your report should contain the graphs, analyses, and answers specified above.

2. Your report should describe the decomposition strategy you used to maximize speedup.

3. The archive file you submit will contain your version of the file mandelbrot.cpp. This file should
contain the best performing code you created. Any modifications you made should follow good
coding conventions, in terms of indenting, variable names, and comments.

2 Problem 2: Vectorizing Code Using SIMD Intrinsics (20 points)

Take a look at the function clampedExpSerial() in prog2_vecintrin/functions.cpp of the
Assignment 1 code base. The function raises values[i] to the integer power given by exponents[i]
for all elements of the input array and clamps the resulting values at 4.18. The function computes xp based
on the technique known as exponentiation by squaring. Whereas the usual technique of multiplying together
p copies of x requires p− 1 multiplications, iterative squaring requires at most 2 log2 p multiplications. For
p = 1000, exponentiation by squaring requires less than 20 multiplications rather than 999. In Problem 2,
your job is to vectorize this piece of code so that it can be run on a machine with SIMD vector instructions.

We won’t ask you to craft an implementation using the SSE or AVX vector instrinsics that map to real
vector instructions on moderns CPUs. Instead, to make things a little easier, we’re asking you to implement
your version using 15-418’s “fake vector instrinics” defined in CMU418intrin.h. The CMU418intrin
library provides you with a set of vector instructions that operate on vector values and/or vector masks.
(These functions don’t translate to real vector instructions; instead we simulate these operations for you
in our library, and provide feedback that makes for easier debugging.) As an example of using the 15-
418 intrinsics, a vectorized version of the abs() function is given in functions.cpp. This example
contains some basic vector loads and stores and manipulates mask registers. Note that the abs() example
is only a simple example, and in fact the code does not correctly handle all inputs. (We will let you figure
out why.) You may wish to read through the comments and function definitions in CMU418intrin.h to
know what operations are available to you.

Here are a few hints to help you in your implementation:

4

https://en.wikipedia.org/wiki/Exponentiation_by_squaring


1. Every vector instruction is subject to an optional mask parameter. The mask parameter defines which
lanes have their output “masked” for this operation. A 0 in the mask indicates a lane is masked, and
so its value will not be overwritten by the results of the vector operation. If no mask is specified in
the operation, no lanes are masked. (This is equivalent to providing a mask of all ones.) Your solution
will need to use multiple mask registers and various mask operations provided in the library.

2. You will find the _cmu418_cntbits() function to be helpful in this problem.

3. You must handle the case where the total number of loop iterations is not a multiple of SIMD vector
width. We suggest you test your code with ./vrun -s 3. You might find _cmu418_init_ones()
helpful.

4. Use ./vrun -l to print a log of executed vector instruction at the end. Use function addUserLog()
to add customized debug information in log. Feel free to add additional CMU418Logger.printLog()
to help you debug.

The output of the program will tell you if your implementation generates correct output. If there are incorrect
results, the program will print the first one it finds and print out a table of function inputs and outputs.
Your function’s output is after “output = ”, which should match with the results after “gold = ”.
The program also prints out a list of statistics describing utilization of the 15418 fake vector units. You
should consider the performance of your implementation to be the value “Total Vector Instructions”. “Vector
Utilization” shows the percentage of vector lanes that are enabled.

What you need to do:

1. Implement a vectorized version of clampedExpSerial() as the function clampedExpVector()
in file functions.cpp. Your implementation should work with any combination of input array
size N and vector width W .

2. Run ./vrun -s 10000 and sweep the vector width over the values {2, 4, 8, 16, 32}. Record the
resulting vector utilization. You can do this by changing the defined value of VECTOR_WIDTH in
CMU418intrin.h and recompiling the code each time. How much does the vector utilization
change as W changes? Explain the reason for these changes and the degree of sensitivity the uti-
lization has on the vector width. Explain how the total number of vector instructions varies with
W .

3. Extra credit: (1 point) Implement a vectorized version of arraySumSerial() as the function
arraySumVector() in file functions.cpp. Your implementation may assume that W is a
factor of the input array size N . Whereas the serial implementation has O(N) span, your implemen-
tation should have at most O(N/W + log2W ) span. You may find the hadd and interleave
operations useful.

What you need to turn in:

1. Your report should contains tables giving the vector utilizations and total vector instructions for the
different values of W .

5



2. Your report should contain the analyses and answers to the questions listed above.

3. If you did the extra credit problem, state in the report whether or not your code passed the correctness
test.

4. The archive file you submit will contain your version of the file functions.cpp. This file should
contain the best performing code you created. Any modifications you made should follow good
coding conventions, in terms of indenting, variable names, and comments.

3 Problem 3: Parallel Fractal Generation Using ISPC (15 points)

The code for this problem is in the subdirectory prog3_mandelbrot_ispc. Now that you’re comfort-
able with SIMD execution, we’ll return to parallel Mandelbrot fractal generation. As in Problem 1, Problem
3 computes a Mandelbrot fractal image, but it achieves even greater speedups by utilizing the SIMD execu-
tion units within each of the 8 cores.

In Problem 1, you parallelized image generation by creating one thread for each processing core in the
system. Then, you assigned parts of the computation to each of these concurrently executing threads. Instead
of specifying a specific mapping of computations to concurrently executing threads, Problem 3 uses ISPC
language constructs to describe independent computations. These computations may be executed in parallel
without violating program correctness . In the case of the Mandelbrot image, computing the value of each
pixel is an independent computation. With this information, the ISPC compiler and runtime system take on
the responsibility of generating a program that utilizes the CPUs collection of parallel execution resources
as efficiently as possible.

You will make a simple fix to Problem 3, which is written in a combination of C++ and ISPC. (The
error causes a performance problem, not a correctness one.) With the fix, you should observe perfor-
mance that is over twenty times greater than that of the original sequential Mandelbrot implementation
from mandelbrotSerial().

3.1 Problem 3, Part 1. A Few ISPC Basics (7 of 15 points)

When reading ISPC code, you must keep in mind that, although the code appears much like C/C++ code,
the ISPC execution model differs from that of standard C/C++. In contrast to C, multiple program instances
of an ISPC program are always executed in parallel on the CPU’s SIMD execution units. The number of
program instances executed simultaneously is determined by the compiler (and chosen specifically for the
underlying machine). This number of concurrent instances is available to the ISPC programmer via the
built-in variable programCount. ISPC code can reference its own program instance identifier via the
built-in programIndex. Thus, a call from C code to an ISPC function can be thought of as spawning a
group of concurrent ISPC program instances (referred to in the ISPC documentation as a gang). The gang
of instances runs to completion, then control returns back to the calling C code.

As an example, the following program uses a combination of regular C code and ISPC code to add two
1024-element vectors. As discussed in class, since each instance in a gang is independent and performs the
exact same program logic, execution can be accelerated via SIMD instructions.

6



A simple ISPC program is given below. First, the C program, which calls the ISPC-generated code:

------------------------------------------------------------------------
C program code: myprogram.cpp
------------------------------------------------------------------------
const int TOTAL_VALUES = 1024;
float a[TOTAL_VALUES];
float b[TOTAL_VALUES];
float c[TOTAL_VALUES]

// Initialize arrays a and b here.
. . .

sum(TOTAL_VALUES, a, b, c);

// Upon return from sumArrays, result of a + b is stored in c.

The function sum() called by the C code is generated by compiling the following ISPC code:

------------------------------------------------------------------------
ISPC code: myprogram.ispc
------------------------------------------------------------------------
export sum(uniform int N, uniform float* a, uniform float* b, uniform float* c)
{

// Assumption programCount divides N evenly.
for (int i=0; i<N; i+=programCount)
{

c[programIndex + i] = a[programIndex + i] + b[programIndex + i];
}

}

The ISPC program code above interleaves the processing of array elements among program instances. Note
the similarity to Problem 1, where you statically assigned parts of the image to threads.

However, rather than thinking about how to divide work among program instances (that is, how work is
mapped to execution units), it is often more convenient, and more powerful, to instead focus only on the
partitioning of a problem into independent parts. ISPCs foreach construct provides a mechanism to
express problem decomposition. Below, the foreach loop in the ISPC function sum2() defines an
iteration space where all iterations are independent and therefore can be carried out in any order. ISPC
handles the assignment of loop iterations to concurrent program instances. The difference between sum()
and sum2() below is subtle, but very important. sum() is imperative: it describes how to map work to
concurrent instances. The sum2() function below is declarative: it specifies only the set of work to be
performed.

-------------------------------------------------------------------------
ISPC code:
-------------------------------------------------------------------------
export sum2(uniform int N, uniform float* a, uniform float* b, uniform float* c)

7



{
foreach (i = 0 ... N)
{

c[i] = a[i] + b[i];
}

}

Before proceeding, you are encouraged to familiarize yourself with ISPC language constructs by reading
through the ISPC walkthrough available at http://ispc.github.com/example.html. The example
program in the walkthrough is almost exactly the same as Problem 3’s implementation of mandelbrot_ispc()
in mandelbrot.ispc. In the assignment code, we have changed the bounds of the foreach loop to
yield a more straightforward implementation.

What you need to do:

1. Compile and run the program mandelbrot.ispc. The ISPC compiler is configured to emit 8-
wide AVX2 vector instructions. What is the maximum speedup you expect given what you know
about these CPUs? Why might the number you observe be less than this ideal? Hint: Consider the
characteristics of the computation you are performing. What parts of the image present challenges for
SIMD execution? Comparing the performance of rendering the different views of the Mandelbrot set
may help confirm your hypothesis.

We remind you that for the code described in this subsection, the ISPC compiler maps gangs of
program instances to SIMD instructions executed on a single core. This parallelization scheme differs
from that of Problem 1, where speedup was achieved by running threads on multiple cores.

3.2 Problem 3, Part 2: ISPC Tasks (8 of 15 points)

ISPC’s SPMD execution model and the foreach mechanism facilitate the creation of programs that utilize
SIMD processing. The language also provide the launch mechanism to utilize multiple cores in an ISPC
computation, via a lightweight form of threading known as tasks.

See the launch command in the function mandelbrot_ispc_withtasks() in the file mandelbrot.ispc.
This command launches multiple tasks (2 in the starter code). Each task defines a computation that will be
executed by a gang of ISPC program instances. As given by the function mandelbrot_ispc_task(),
each task computes a region of the final image. Similar to how the foreach construct defines loop itera-
tions that can be carried out in any order (and in parallel by ISPC program instances), the tasks created by
this launch operation can be processed in any order (and in parallel on different CPU cores).

What you need to do:

1. Run mandelbrot_ispcwith the commandline option “--tasks.” What speedup do you observe
on view 1? What is the speedup over the version of mandelbrot_ispc that does not partition that
computation into tasks?

2. There is a simple way to improve the performance of mandelbrot_ispc --tasks by changing
the number of tasks the code creates. By only changing code in the function mandelbrot_ispc_withtasks(),

8

http://ispc.github.com/example.html


you should be able to achieve performance that exceeds the sequential version of the code by about
20–22 times! How did you determine how many tasks to create? Why does the number you chose
work best?

Note: Your code must correctly handle the case where the number of rows in the image is not divisible
by the number of tasks.

3. Extra Credit: (1 point) What are differences between the Pthread abstraction (used in Problem 1) and
the ISPC task abstraction? There are some obvious differences in semantics between the (create/join
and (launch/sync) mechanisms, but the implications of these differences are more subtle. Here’s a
thought experiment to guide your answer: what happens when you launch 10,000 ISPC tasks? What
happens when you launch 10,000 pthreads?

The smart-thinking student’s question: Hey wait! Why are there two different mechanisms (foreach and
launch) for expressing independent, parallelizable work to the ISPC system? Couldn’t the system just
partition the many iterations of foreach across all cores and also emit the appropriate SIMD code for the
cores? Answer: Great question! And there are a lot of possible answers. We’ll talk more in lecture.

What you need to turn in:

1. Your report must contain answers to the questions listed above.

2. Your report should describe performance gains you get from both SIMD and threaded parallelism.

3. The archive file you submit will contain your version of the file mandelbrot.ispc. This file
should contain the best performing code you created. Any modifications you made should follow
good coding conventions, in terms of indenting, variable names, and comments.

4 Problem 4: Iterative Square Root (10 points)

The code for this problem is in the subdirectory prog4_sqrt. Problem 4 concerns the program sqrt,
generated from an ISPC program that computes the square root of 20 million random numbers between 0
and 3. For value s, it uses the iterative Newton’s method (named after Isaac Newton) to solve the equation
1/x2 = s. This gives a value x ≈

√
1/s. Multiplying x by s gives an approximation to

√
s.

The value 1.0 is used as the initial guess in this implementation. The graph below shows the number of
iterations required for the program to converge to an accurate solution for values in the open interval (0, 3).
(The implementation does not converge for inputs outside this range). Notice how the rate of convergence
depends on how close the solution is to the initial guess.

9



0	

5	

10	

15	

20	

25	

30	

35	

40	

0.0	 0.5	 1.0	 1.5	 2.0	 2.5	 3.0	

Ite
ra
&o

ns
	

Input	Value	

Itera&ons	to	Convergence	by	Square	Root	Func&on	

What you need to do:

1. Build and run sqrt. Report the ISPC implementation speedup for a single CPU core (no tasks) and
when using all cores (with tasks). What is the speedup due to SIMD parallelization? What is the
speedup due to multi-core parallelization?

2. Modify the function initGood() in the file data.cpp to generate data that will yield a very
high relative speedup of the ISPC implementations. Describe why these input data will maximize
speedup over the sequential version and report the resulting speedup achieved (for both the with-
and without-tasks ISPC implementations). You can test this version with the commandline argument
“--data g.” Does your modification improve SIMD speedup? Does it improve multi-core speedup?
Please explain why.

3. Modify the function initBad() in the file data.cpp to generate data that will yield a very low
(less than 1.0) relative speedup of the ISPC implementations. Describe why these input data will
cause the SIMD code to have very poor speedup over the sequential version and report the resulting
speedup achieved (for both the with- and without-tasks ISPC implementations). You can test this
version with the commandline argument “--data b.” Does your modification improve multi-core
speedup? Please explain why.

Notes and comments: When running your “very-good-case input”, take a look at what the benefit of multi-
core execution is. You might be surprised at how high it is. This is a hyper-threading effect.

What you need to handin:

1. Provide explanations and answers in your report.

2. The archive file you submit will contain your version of the file data.cpp.

5 Problem 5: BLAS saxpy (10 points)

The code for this problem is in the subdirectory prog5_saxpy. Problem 5 concerns implementations of
the saxpy routine in the BLAS (Basic Linear Algebra Subproblems) library that is widely used (and heavily

10



optimized) on many systems. The saxpy function computes the simple operation ~r = a~x + ~y where a is
a scalar, and ~r, ~x, and ~y, are vectors of N single-precision floating-point values. (The word “saxpy” is an
acronym for “single-precision a x plus y.”) In program 5, N = 20 × 106. Note that saxpy performs two
math operations (one multiply, one add) for every three elements used. The saxpy function is a trivially
parallelizable computation and features predictable, regular data access and predictable execution cost.

What you need to do:

1. Compile and run the saxpy program. The program will report the performance of ISPC (without
tasks) and ISPC (with tasks) implementations of saxpy. What speedup from using ISPC with tasks
do you observe? Explain the performance of this program. Do you think it can be substantially im-
proved? (For example, could you rewrite the problem to achieve near linear speedup?) Please justify
your answer. Take into consideration both the memory bandwidth performance and the floating-point
arithmetic performance.

2. Extra Credit: (1 point) Note that main.cpp computes the total number of memory bytes used as
4 * N * sizeof(float), even though on each step, the saxpy program loads one value from
vector X, one from Y and then writes one value to the result vector. (It holds the scalar value in a
register.) Why is the computation in main.cpp correct? Note: Some students have gotten hung
up on this question (thinking too hard) in the past. We expect a simple answer, but the results from
running this problem might trigger more questions in your head.

3. Extra Credit: (2 points) Improve the performance of saxpy by reducing the memory requirement to 3
* N * sizeof(float). Write your code by modifying the function saxpyStreaming() in
the file saxpyStreaming.cpp. Hint: You will need to make use of the Intel intrinsics that enable
the “non-temporal memory hint.”

What you need to turn in:

1. Your report should contain your observations and analyses.

2. Your answer for the first extra credit problem should be in the report.

3. If you did the second extra-credit problem, your report should contain data on the performance you
achieved.

4. The archive file you submit will contain your version of the file saxpyStreaming.cpp. This will
contain your solution to the second extra-credit problem.

Hand-in Instructions

As mentioned, you should have your report in a file report.pdf in the home directory for the assignment.
(Make sure the report includes your name and Andrew Id.) In this directory, execute the command

make handin.tar

11



This will create an archive file with your report, and some of the files your modified for the different prob-
lems.

Completing the handin then depends on your status in the class:

• If you are a registered student, you should have a course Autolab account. Go to Autolab at:

https://autolab.andrew.cmu.edu/courses/15418-f18

and submit the file handin.tar.

• if you are on the waitlist, you will not have an Autolab account. Instead, you should run the provided
program submit.py as follows:

./submit.py -u AndrewID

where AndrewID is your Andrew ID.

In either case, you can submit multiple times, but only your final submission will be graded, and the time
stamp of that submission will be used in determining any late penalties.

12

https://autolab.andrew.cmu.edu/courses/15418-f18

	Problem 1: Parallel Fractal Generation Using Pthreads (15 points)
	Problem 2: Vectorizing Code Using SIMD Intrinsics (20 points)
	Problem 3: Parallel Fractal Generation Using ISPC (15 points)
	Problem 3, Part 1. A Few ISPC Basics (7 of 15 points)
	Problem 3, Part 2: ISPC Tasks (8 of 15 points)

	Problem 4: Iterative Square Root (10 points)
	Problem 5: BLAS saxpy (10 points)

