15-381.: Atrtificial Intelligence
Assignment 4: Planning

Sample Solution

November 5, 2001

1. Consider a robot domain as shown in Figure 1. The domain consists a house that belongs to
Pat, who has a robot-butler. Initially, Pat and the robot are in the living room, and there is an
orange in the kitchen. The door between the family room and the kitchen is closed, while all
other doors are open. The robot can perform the following actions with the associated costs:

go: Go through an open door to an adjacent room; cost: 2.
open-door: Open a door (when in the same room); cost: 3.
pick: Pick an orange (when in the same room); cost: 1.

(a) Consider the task of sending the robot to the kitchen to pick the orangd. Aearch
was performed resulting in the search space shown in Figure 2. Choose an admissible
heuristic, state it, and fill in the missing values for h and f, so that nodes 1 through 5
were expanded in that order. NOTE: Your heuristic cannot be 0 or some other constant
value.

Letd be the shortest distance from the current position to the kitchen, assum-
ing no doors are closed. Use following heuristic:

20 + 1 if orange has not been picked up
h = ;
20 otherwise

The heuristic is admissible because it always underestimates the cost of mov-
ing from one room to another. If there is an open door between two rooms, the

Living Room (LR) Family Room (FR) Q)ining Room (DR)

/ﬁ\ Robot (R)
Kitchen (K)
é Pt (P) & O orange (0)

Figure 1: The robot-butler domain.

heuristic estimate is equal to the actual cost. If there is a closed door between
two rooms, the cost of moving to the room on the other side of the door is at

least 4 (by moving through another room first), and the heuristic estimate is

only 2. Also, if the orange has not been picked up yet, it needs to be done

eventually, so that will add a cost of 1.

(b) What is the solution found? Is this an optimal solution? Why or why not?

The solution is: go(LR,FR), go(FR,DR), go(DR,K), pick(O). It is optimal
because the heuristic used with A* was admissible.

(c) Suppose that the robot has executed the plan of Part (b), and now it is in the kitchen
with the orange. Consider the task of carrying the orange to the living room (in order
to give it to Pat). Show the optimal plan for executing this task. (Younoimeed to
show the search space this time, only the resulting plan.)

The solution is: go(K, DR), go(DR,FR), go(FR,LR).

(d) Now consider again the initial situation, shown in Figure 1, and suppose that the robot
knowsbothgoals, i.e. picking up the orange and bringing it to Pat, from the beginning.
What is the optimal plan for achieving these two goals?

The solution is: go(LR,FR), open-door(FR,K), go(FR,K), pick(O), go(K,FR),
go(FR,LR).

(e) How does the plan found in (d) differ from the plans found in Parts (b) and (c)? Can
you suggest any search algorithm that would find this optimal plan? Is it possible to
useA* (with an admissible heuristic) to perform this search?

The plan in (d) opens the door between the family room and the kitchen, and
therefore avoids going through the dining room twice. The cost of the plan in
(d) is 12, while the combined cost of the plans in (b) and (c) is 13. We can
still use A* to find the optimal plan in (d), for example by using the heuristic
h = 0. Itis possible to construct more informed heuristics as well.

(H Compare the efficiency of searching for the overall optimal plan given the two goals
initially, as stated in part (d), with the efficiency of search in Parts (a) and (b). What
conclusion can you make about the difficulty of finding the optimal plan for achieving
multiple conjunctive goals?

While the branching factdr in all cases are the same, the length of the over-
all optimal plan is likely to be longer than the length of the plans for each
individual subgoal. The complexity 9(b%,,) for finding the overall optimal
plan, but justO(kb?,,) for finding & plans when treating subgoals indepen-
dently. The former dominates the latter in most cases, so it is harder to find
the overall optimal plan. By working on subgoals independently we can find

a solution faster, but might have to sacrifice optimality.

2. Consider the following four operators (cf. page 346 in the textbook):

A

A

go (cost 2)

| %\

go (cost 2)

!
| #

go (cost 2)

¢
N

\%\O

go (cost 2)

|
<

N

pick (cost 1)

\

N

Node 1
h=5
f=5

Node 2
h=3
f=5

open-door (cost 3)

Node 3 @\ \
h=3)\ |
f=7

| ©

Node 4
h=1
f=7

open-door (cost 3)

Node 5 \

h=0)—bc
f=7
| MO

Figure 2: Search space for the robot-butler domain.

Operators

RightShoe RightSock LeftShoe LeftSock Hat Coat
preconds | RightSockOn| - LeftSockOn| - - -
adds RightShoeOn RightSockOn| LeftShoeOn| LeftSockOn| HatOn | CoatOn
deletes | - - - - - -

Define additional operators for putting a hat and a coat on, respectively, assuming that there
are no preconditions for putting on the hat and the coat. Give a partial-order plan that is a
solution, and show that there are 180 different linearizations of this solution.

Partial order plan:

Start

LeftSock RightSock

LeftShoe RightShoe

Finish

There are5! = 720 possible combinations of the six steps in the plan. Half of
these will have the LeftShoe step before the LeftSock step, le@éihgteps not
violating the ordering constraint between those two steps. Furthermore, half of the
remaining plans will have the RightShoe step before the RightSock step, leaving
180 steps not violating any ordering constraints.

3. The POP algorithm in the textbook is a regression planner, because it adds steps whose
effects satisfy unsatisfied conditions in the plan. Progression planners add steps whose pre-
conditions are satisfied by conditions known to be true in the plan. Modify POP so that it
works as a progression planner.

Eliminate SLECT-SUBGOAL, and instead make HOOSEOPERATOR choose
from the operators that have all their preconditions achieved by existing steps
in the partial plan.

4. POP is a nondeterministic algorithm, and has a choice about which operator to add to the
plan at each step and how to resolve each threat. Can you think of any domain-independent
heuristics for ordering these choices that are likely to improve POP’s efficiency?

One simple heuristic is to minimize the number of unlinked preconditions in a
plan at any time. We can do this by preferring steps that achieve preconditions
without adding many new ones. A more sophisticated heuristic would try to esti-
mate the number of steps that would have to be added to a plan in order to achieve
all preconditions. A very effective such estimate is obtained by ignoring delete
lists and positive interaction. Let the cost of an unlinked precondition be O if is is
achieved by the start step. Otherwise, let the cost of the preconditions be the cost
of the operator with the cheapest preconditions. The cost of a set of preconditions
is defined to be the sum of the costs of the individual preconditions in the set.
Other components of a heuristic could be the number of ordering constrains in a
plan (the fewer ordering constraints the better) or the number of threats (the fewer
threats the better).

5. Consider the following operators to load and unload objects into and from containers at and
to some locations, to move containers between locations, and to get any new container at any

location:

Notice that any list of literals represents a conjunction (e.g., the list of preconditions and the
statements of the initial state and the goal).

Operators

LOAD(o,c,l)

MOVE(c,IL,12)

UNLOAD(0,C)

GET-NEW(c,))

preconds | At-Container(c,l) | At-Container(c,I1)| Inside (o,c) -
Space-Available(c At-Container(c,)
At-Obj(o,l)
adds Inside(o,c) At-Container(c,|2)| At-Obj(o,l) At-Container(c,l)
Space-Available(c
deletes | At-Obj(o,l) At-Container(c,l1)| Inside(o,c) -

(a) Consider the following problem:
Initial State: At-Obj(o1,11), At-Obj(02,I1), At-Container(cl,l1), Space-Available(cl).

Goal State: At-Obj(01,12), At-Obj(02,12).

Pat claims:"There is more than one plan that can solve this problem.” Is Pat correct? If
yes, then show at least two plans to solve this problem. Otherwise, justify why Pat is
incorrect.

Pat is correct. Two different plans:
LOAD(01,c1,I1)
LOAD(02,c1,11)
MOVE(c1,I1,12)
UNLOAD(01,c1)
UNLOAD(02,c1)

LOAD(01,c1,I1)
MOVE(c1,I1,12)
UNLOAD(01,c1)
MOVE(c1,12,I1)
LOAD(02,c1,I1)
MOVE(c1,I1,12)
UNLOAD(02,c1)

(b) Suppose now that Space-Available is not known in the initial state. Consider that you
have available an additional operator, CHECK-SPACE, that allows you to check if there
Is Space-Available. That operator returns Space-Available(e)$pace-Available(c).

Show a conditional plan to solve the following simple problem:
Initial State: At-Obj(o1,I1), At-Obj(02,11), At-Container(cl,I1).
Goal State: At-Obj(01,12).

Conditional plan:

Start

At-Container(c1,11)
At-Obj(01,11)

At-Obj(c2,11)

CHECK-SPACE(c1)

» —Space-Available(cl)

\

A\

At-Container(c1,11)
At-0bj(o1,11)
Space-Available(cl)

GET-NEW(c2,11)

At-Container(c1,l1) | MOVE(c1,11,12)

/'

— Inside(ol,c1)

At-Obj(o1,11)
Space-Available(c2)
At-Container(c2,11)

LOAD(01,c2,11) \ Inside(01,c2)

At-Container(c2,11)

At-Container(c2,12)

MOVE(c2,11,12)

LOAD(01,c1,11) At-Container(cL,12) | UNLOAD(o1,c1) \

UNLOAD(01,c2)

At-Obj(01,12)

Finish

rooml

room2

6. Robby is a robot with two grippers—one left and one right. He can pick up and put down
balls with the grippers, and each gripper can hold exactly one ball. The following operators

Figure 3: The gripper domain with one ball in room1.

represent these actions:

Operators
Pick(o,r,g) | Drop(o,r,g) | Move(rl, r2) | Start Finish
preconds | At(o,r) Carry(o,g) | At-Robby(rl)| - At(balll,room?2)
At-Robby(r) | At-Robby(r)
Free(g)
adds Carry(o,g) | At(o,r) At-Robby(r2) | At(balll,rooml) | -
Free(g) At-Robby(room1)
Free(left)
Free(right)
deletes | At(o,r) Carry(o,g) | At-Robby(rl) | - -
Free(g)

Robby can also move between rooms. This way he can pick up balls in one room and drop

them off in another room.

(a) Write an operatamove, representing the action of moving from one room to another.

Now consider the situation depicted in Figure 3. There are two romsog|(l , androom?2).
Robby is inroom1, and both his grippers are empty. There is only one balll{), and it

is also inroom1. The goal is to movéalll

8

fromroom1 toroom?2.

(b) Specify the Start and Finish operators representing the initial situation and the goal,
respectively.

(c) Specify allconsisteninstantiations (with all parameters substituted for atoms) of each
of the three operators.

Pick(alll ,rooml left)
Pick(alll ,room2 left)
Pick(alll ,rooml right)
Pick(alll ,room2 right)
Move(room1,room2)
Move(room2 ,room1)
Drop(alll ,room1 left)
Drop(alll ,room2 left)
Drop(alll ,room1l right)
Drop(alll ,room2 right)

(d) Give a partial-order plan that is a solution to the stated problem. How many lineariza-
tions exist for the plan?

Partial order plan:

Start

Pick(ball 1,room1,left)

Move(room1,room?2)

Drop(ball1,room2,| eft)

Finish

There is only one possible linearization (the plan steps are already totally
ordered).

(e) The principle of least-commitment says that a planner should avoid making decisions
until there is a good reason to make a choice. Give a least-commitment plan that is a

9

solution to the stated problem. How many fully instantiated plans can be constructed
from this plan?

Least-commitment plan:

Start

Pick(ball1,room1,9)

Move(room1,room?2)

Drop(ball1,room2,g)

Finish

There are two possible instantiations (¢gft , or g =right).

10

