15-381: Artificial Intelligence
Assignment 1. Search Algorithms

Handed out: Thursday, September 6", 2001
Due: Tuesday, September 18", 2001 (before class)

Introduction

This is your first programming assignment (aren’t you excited?). In this assignment, you will
implement (and, hopefully, gain an appreciation for) unguided and heuristic search. More
specifically, you will implement a forward search engine that supports multiple search strategies
and use this implementation to find solutions for a simple puzzle.

Also included as the second part of the homework is a short written assignment. Print out and
turn in the last two pages of the homework with your answers written in.

The Puzzle

You are given arow containing 2N tiles arranged in 2N + 1 spaces. There are N black tiles (B), N
white tiles (W), and a single empty space. The tiles are initialy in an arbitrary ordering. Y our
goal isto arrange the tiles such that all whitetiles are positioned to the left of the black ones, and
one black tileisin the rightmost position. The goal position of the empty space is not specified.

Tiles can be moved to the empty space when the empty space is at most N cells away. Hence
there are at most 2N legal moves from each state. The cost of each move is the distance between
the tile and the empty space to which it moves (1 to N). “Circular” moves (i.e. moves wrapping
from one side of the row to the other) are not permitted.

To illustrate the tile domain, consider the trivial case where N = 2.

Initial state may look like:

(w[B[-[B|wW]

There are 4 successors to the initial state:

===
vshlveRivelll
== ||
W |
===

There are 4 goa states:

===
===
== |©
ssBlveRive Il
0d|td | D | oo

The Assignment
Y our implementation should read in an arbitrary starting state for tile problems containing up to
21 positions (10 black, 10 white, and 1 space). Each input file contains a single line specifying

the initial state using B to represent a black tile, W to represent white, and x to represent the
space. For example, one possible starting state for a 7-position problem is the string:

WBBWxWB

You should use one operator, move x, to specify which tile to move into the current empty
position. x isthe position of the card (starting from left to right). Note that you only need specify
which card to move since it will always move into the single empty position. In the absence of
any other heuristic function that determines which tile to move, all legal moves should be
considered in increasing order (i.e. from O to 2N + 1; move 1 occurs before move 3).

Y our program should print out the initial state followed by each move operation selected and its
successor state (i.e. both the operator path and the state path). At the end, it should print the cost
(or the total number of positions that the blank had to move) and the number of nodes expanded
(not just the ones to the solution path). For example, given an initial state BWxBW, your program
might print the following lines:

WBXBW

move 5 WBWBx
move 4 WBWXB
move 2 WXWBB
5

20

The number of nodes expanded in this case, 20, is made up (yours should do the right thing).

Search Strategies

Your program must support three different search strategies. breadth-first search (BFS), depth
first search (DFS), and A* (A-star). Each of these search strategies should be selectable at run-
time by using a command-line keyword (see Logistics section for more details).

Note that you should be implementing this using a single function, not three different functions
(one for each search strategy). Hint: use a next-state queue containing states that have been
generated but not-yet visited as your primary data structure. In such a data structure, BFS implies
a FIFO discipline, DFS implies a LIFO or “stack” discipline, and A* implies a priority queue
sorted according to the heuristic function. Also note that you will need a means of avoiding loops
by checking whether or not a state has already been visited.

A* combines the cumulative cost so far g (n) with a guess about the cost of getting to the
solution from the current state h (n), using the evaluation function £ (n)= g(n)+h(n).
Define g (n) and h (n) such that g (successor (n)) = g(n) and h(n) isan admissible
heuristic (you can’'t use h = 0).

Logistics

The program should be written in C or C++. You must turn in documented source code, as well
as an executable compiled under Linux. Y our executable should accept command-line arguments
specifying the puzzle name and the search type:

./search <inputfile> <bfs|dfs|astars>

The output for the program should be placed in a file cdled
<puzzle> <searchtypes>.txt. For example, if Best First Search is run on a puzzle called
puzl, then the output of the search would be placed in puz1l bfs.txt.

You can find sample test filesin:
/afs'andrew.cmu.edu/course/15/381/homework/Projectl/samples/
The files you should submit are:

e Readme.txt: including

o alist of al your sourcefiles

o documentation of any problems you had as well as any help you attained
(describing who and the nature of the help). Remember: it is much better to seek
help, learn the material, and turn in the assignment complete and on time than to
fail to complete the assignment.

o a description of the heuristic you used for the A* search. You must show the
formula you used, but may describe it in plain English. Explain why the heuristic
isadmissible.

e Your source code
e Anexecutable caled search, compiled and tested under Linux.

These files should be submitted in the course directory at:
/af’andrew.cmu.edu/course/15/381/handin/<your_id>/pl/

These directories will be created a few days before the due date and will be closed when class
starts on Tuesday, September 18", 2001. If you are submitting your project late (try to avoid this
for the first assignment!), let us know and we will keep the folder open. E-mail Desney
(desney@cs.cmu.edu) when you do submit it.

Grading
Your assignment will be graded by running your code on new initial states and examining the
traces you produce. Grades will be determined by:

e Conformance to the execution and output formats specified above

e Correctness of your search implementation

e Whether or not your program finds avalid (and when required, optimal) path

Further Information
Please post to the class bboard: cmu.cs.class.cs381 or contact Desney
(desney@cs.cmu.edu) or Hakan (lorens@cs.cmu.edu) if you have further questions.

Written Assignment 1

Problem 1
In your programming assignment, we limited the size of the puzzlesto 21 (10 of each color and a

blank space). Briefly discuss how each of the search techniques would scale to larger puzzles and
how performance would be affected. Think of a puzzlethat isamillion and one pieceslarge if
that helps you.

Problem 2
Imagine a scenario with arobot trying to navigate in the following maze from the start position

(S) to the goal position (G). At each step, the robot can move in one of the four compass
directions. The robot contemplates alternatives in the following order:

Move South
Move East
Move North
Move West

a Mark the set of states that are expanded during the search, in the order they are expanded,
by putting a“1” in thefirst state, a“2” in the second, and so on (Put a“1” in the cell
marked S). Assume that the search is a Depth First Search (DFS). Use the version of DFS
that avoids loops by never re-expanding a state that is on the current path.

G

b.

Using the same notation, mark the set of states that Breadth First Search (BFS) would
expand, in the order in which they are expanded.

G

S

Again using the same notation, mark the set of states that A-star search would expand, in
the order that they are expanded. Assume we use the following heuristic:

H(x) = (Horizontal number of cells between x and G) +
0.999 * (Vertical number of cells between x and G)

G

