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Abstract. This paper presents layered learning, a hierarchical machine
learning paradigm. Layered learning applies to tasks for which learning a
direct mapping from inputs to outputs is intractable with existing learn-
ing algorithms. Given a hierarchical task decomposition into subtasks,
layered learning seamlessly integrates separate learning at each subtask
layer. The learning of each subtask directly facilitates the learning of
the next higher subtask layer by determining at least one of three of
its components: (i) the set of training examples; (ii) the input repre-
sentation; and/or (iii) the output representation. We introduce layered
learning in its domain-independent general form. We then present a full
implementation in a complex domain, namely simulated robotic soccer.

1 Introduction

Machine learning (ML) algorithms select a hypothesis from a hypothesis space
based on a set of training examples such that the chosen hypothesis is predicted
to characterize unseen examples as accurately as possible. Each hypothesis maps
a set of input features to a set of output features. Inputs are constructed from
information in the domain and outputs are possible classifications or actions.

Our research focuses on learning tasks for which learning a direct mapping
from inputs to outputs is intractable given existing learning algorithms. The
approach we take is to break the problem down into several hierarchical learning
layers such that each layer facilitates the learning of the next. By determining the
set of training examples, the input representation, or the output representation,
previously learned functions can enable the creation of increasingly complex
learned functions. We call this approach to machine learning “layered learning.”

Layered learning assumes that the appropriate aspects of the task to be
learned are determined as a function of the specific domain. It does not include
an automated hierarchical decomposition of the task. Each layer is learned by
applying an ML algorithm that is appropriate for the specific subtask character-
istics. In this paper, we apply layered learning to a complex multiagent learning
task, namely simulated robotic soccer.

We have previously presented the individual learned tasks in this domain [18,
20] as well as a preliminary version of the concept of layered learning [18].
This paper contributes the concrete domain-independent specification of lay-
ered learning as presented in Sections 2 and 3. Section 4 reviews our machine
learning research in the simulated robotic soccer domain, couching it in the terms
of our layered learning specification. This layered learning example is fully im-
plemented and tested as described in Section 5. In Sections 6 and 7, we relate
layered learning to previous research and discuss directions for future work.



2 Layered Learning
Table 1 summarizes the principles of our layered learning paradigm which are
described in detail in this section.

1. A mapping directly from inputs to outputs is not tractably learnable.

A bottom-up, hierarchical task decomposition is given.

3. Machine learning exploits data to train and/or adapt. Learning occurs separately
at each level.

4. The output of learning in one layer feeds into the next layer.

N

Table 1. The key principles of Tayered Iearning.

2.1 Principle 1

Layered learning is designed for domains that are too complex for learning a
mapping directly from the input to the output representation. Instead, the lay-
ered learning approach consists of breaking a problem down into several task
layers. At each layer, a concept needs to be acquired. A machine learning algo-
rithm abstracts and solves the local concept-learning task.

2.2 Principle 2

Layered learning uses a bottom-up incremental approach to hierarchical task
decomposition. Starting with low-level subtasks, the process of creating new
ML subtasks continues until reaching the high-level task that deal with the full
domain complexity. The appropriate learning granularity and subtasks to be
learned are determined as a function of the specific domain. The task decom-
position in layered learning is not automated. Instead, the layers are defined by
the ML opportunities in the domain.

2.3 Principle 3

Machine learning is used as a central part of layered learning to exploit data
in order to train and/or adapt the overall system. ML is useful for training
functions that are difficult to fine-tune manually. It is useful for adaptation when
the task details are not completely known in advance or when they may change
dynamically. In the former case, learning can be done off-line and frozen for
future use. In the latter, on-line learning is necessary: since the learner needs to
adapt to unexpected situations, it must be able to alter its behavior even while
executing its task. Like the task decomposition itself, the choice of machine
learning method depends on the subtask.

2.4 Principle 4

The key defining characteristic of layered learning is that each learned layer
directly affects the learning at the next layer. A learned subtask can affect the
subsequent layer by:

— constructing the set of training examples;
— providing the features used for learning; and/or
— pruning the output set.

All three cases are illustrated in our implementation described in Section 4.



3 Formalism

Consider the learning task of identifying a hypothesis h from among a class of
hypotheses H which map a set of state feature variables S to a set of outputs O
such that, based on a set of training examples, h is most likely (of the hypotheses
in H) to represent unseen examples.

When using the layered learning paradigm, the complete learning task is
decomposed into hierarchical subtask layers {L;, Ls,...,L,} with each layer
defined as

Li = (F’i7 O’i7 T’i; Mi7 hl)
where:
F; is the input vector of state features relevant for learning subtask L;. F; =
<F!F?,..>.Vj, F/ €S.
O; is the set of outputs from among which to choose for subtask L;. O, = O.
T; is the set of training examples used for learning subtask L;. Each element of

T; consists of a correspondence between an input feature vector f € F; and

o€ 0.

M; is the ML algorithm used at layer L; to select a hypothesis mapping F; — O;
based on Tj.
h; is the result of running M; on T;. h; is a function from F; to O;.

As set out in Principle 2 of layered learning, the definitions of the layers L;
are given a priori. Principle 4 is addressed via the following stipulation. Vi < n,
h; directly affects L;11 in at least one of three ways:

— h; is used to construct one or more features F ;.
— h; is used to construct elements of T;41; and/or
— h; is used to prune the output set O;4;.

It is noted above in the definition of F; that Vj, Ff € S. Since F;41 can
consist of new features constructed using h;, the more general version of the
above special case is that Vi, j, F} € SUi_} Oy.

4 TImplementation

In this section, we illustrate layered learning via a full-fledged implementation
in the RoboCup Soccer Server [14]. Here, the high-level goal is for a team of
independently controlled agents to achieve complex collaborative and adversar-
ial behavior. The subtasks are increasingly complex individual and multiagent
behaviors.

The purpose of this section is to illustrated layered learning via a fully-
implemented system. full details of the domain and each individual learned sub-
task have been previously reported. However they have not been represented in
terms of the formalism presented in Section 3.

4.1 Simulated Robotic Soccer

The RoboCup soccer server [14] has been used as the basis for successful inter-
national competitions and research challenges [8]. As presented in detail in [17],
it is a fully distributed, multiagent domain with both teammates and adversaries.



There is hidden state, meaning that each agent has only a partial world view
at any given moment. The agents also have noisy sensors and actuators, mean-
ing that they do not perceive the world exactly as it is, nor can they affect
the world exactly as intended. In addition, the perception and action cycles are
asynchronous, prohibiting the traditional AT paradigm of using perceptual input
to trigger actions. Communication opportunities are limited; the agents must
make their decisions in real-time; and the actions taken by other agents, both
teammates and adversaries, and their resulting state transitions are unknown.
We refer to this last quality of unknown state transitions as opaque transitions.
These italicized domain characteristics combine to make simulated robotic soccer
a realistic and challenging domain.

4.2 Layered Learning in Robotic Soccer

Consider the task of a robotic soccer agent retrieving a moving ball and deciding
what to do with it. It could dribble the ball, pass to a teammate, or shoot
towards the goal. While this task does not encompass the entire robotic soccer
task (agents must also decide what to do when they don’t have the ball), it
comprises an important part of the complete task.

We decompose this task into three learning components or subtasks: ball
interception, pass evaluation, and pass selection. Given this hierarchical decom-
position, layered learning allows us to create effective team-oriented agent be-
haviors.

Table 2 illustrates our set of learned behavior levels within the simulated
robotic soccer domain. We identify a useful low-level skill that must be learned
before moving on to higher-level strategies. Then we build upon it to create
higher-level multiagent and team behaviors. Full details regarding the training
and testing of each learned behavior are reported in [17].

||Layer||Behavior type| Example ||

L individual |ball interception
Ly multiagent pass evaluation
L3 team pass selection

Table 2. Examples of different behavior levels in robotic soccer.

Ly: Ball Interception — an individual skill. First, the agents learn a
low-level individual skill that allows them to control the ball effectively. While
executed individually, the ability to intercept a moving ball is required due to
the presence of other agents: it is needed to block or intercept opponent shots or
passes as well as to receive passes from teammates. As such, it is a prerequisite
for most ball-manipulation behaviors. We chose to have our agents learn this
behavior because it was easier to collect training data than to fine-tune the
behavior by hand.!

! The learning was done in an early implementation of the soccer server (Version 2)
in which agents did not receive any velocity information when seeing the ball.



L, is defined as follows.

F, = {BallDist:, Ball Ang:, Ball Dist.—1}: The agent learns what action
to take based on the ball’s current distance and angle from the defender,
and the ball’s distance a fixed time (250 msec.) in the past.

O;1 = {TurnAng}: The agent chooses an angle to turn such that it will be
likely to intercept the ball.

Ti: The training procedure for ball interception involves a stationary forward
repeatedly shooting the ball towards a defender in front of a goal. The de-
fender collects training examples by acting randomly and noticing when it
successfully stops the ball. Test examples are classified as saves (successful
interceptions), goals (unsuccessful attempts), and misses (shots that went
wide of the goal).

M, = a neural network: Ball interception is trained with a fully-connected
neural network with 4 sigmoid hidden units and a learning rate of 107¢. The
weights connecting the input and hidden layers use a linearly decreasing
weight decay starting at .1%. We use a linear output unit with no weight
decay. The neural network was trained for 3000 epochs.

hy = a trained interception behavior: Table 3 shows the effect of the num-
ber of training examples on learned save percentage. With about 750 training
examples, the defender is able to stop 91% of shots on goal (saves + goals:
misses are omitted), a comparable save rate to that achieved when using an
analytic ball interception behavior [18].

Training Saves
Examples|Saves(%) Goals(%) Goals+Saves(%)

100 57 33 63

200 73 18 80

300 81 13 86

400 81 13 86

500 84 10 89

750 86 9 91

1000 83 10 89

4773 84 9 90

Table 3. The defender’s performance when using neural networks trained with different
numbers of training examples.

L,: Pass Evaluation — a multiagent behavior. Second, the agents use their
learned ball-interception skill as part of the behavior for training a multiagent
behavior. When an agent has the ball and has the option to pass to a particular
teammate, it is useful to have an idea of whether or not the pass will actually
succeed if executed: will the teammate successfully receive the ball? Such an
evaluation depends on not only the teammate’s and opponents’ positions, but
also their abilities to receive or intercept the pass. Consequently, when creating
training examples for the pass-evaluation function, we equip the intended pass
recipient as well as all opponents with the previously learned ball-interception



behavior, h;. Again, we chose to have our agents learn the pass-evaluation capa-
bility because it is easier to collect training data than to construct it by hand.

Fy

0-

L» is defined as follows.

= a set of 174 continuous and ordinal features: There are many fea-
tures that could possibly affect pass evaluation. We encode a large set of
attributes representing the relative positions of teammates and opponents
on the field as well as statistical counts reflecting their relative position-
ing [18]. These features are not carefully chosen. On the contrary, many
possibly irrelevant features are included, leaving the ML algorithm to select
the proper ones. A full list of the attributes can be found in [18].

= [—1,1] : A potential pass to a particular receiver is classified as a success
with a confidence factor € (0,1], a failure with a confidence factor € [—1,0),
or a miss (= 0).

: The training procedure for pass evaluation involves a passer kicking the

ball towards randomly-placed teammates interspersed with randomly-placed
opponents. The training scenario is illustrated within a screen shot of the
soccer server in Figure 1. The dashed line indicates the region in which the
teammates and opponents are randomly placed. The intended pass recipient
and the opponents all use the learned ball-interception behavior, hy. Trials are
classified as successes (a teammate intercepts the ball), failures (an opponent
intercepts the ball), and misses (no player intercepts the ball). When passing
to a random teammate, 51% of passes are successful.

icl
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Fig. 1. The training scenario for pass evaluation. The dashed line indicates the region
in which the teammates and opponents are randomly placed prior to each trial.

M, = C4.5: To learn pass evaluation, we use the C4.5 decision tree training

algorithm [15] with all of the default parameters. Decision trees are cho-
sen over neural networks because of their ability to ignore irrelevant input
features.



h2 = a trained pass-evaluating decision tree: During testing, the trained
decision tree returns a predicted classification as well as a confidence factor,
resulting in a value between —1 and 1. Table 4 tabulates our results indicating
that the trained decision tree enables the passer to choose successfully from
among its potential receivers. Overall results are given as well as a breakdown
by the passer’s confidence prior to the pass. In this experiment, the passer is
forced to pass even if it predicts failures for all 3 teammates. In that case, it
passes to the teammate with the lowest likelihood of failure. 65% of all passes
and 79% of passes predicted to succeed with high confidence are successful.

Success Confidence:
Result Overall| .8-9 .7-8 .6-.7
(Number) (5000) |(1050) (3485) (185)
SUCCESS (%)|| 65 79 63 58
FAILURE (%)| 26 15 29 31
MISS (%) 8 5 8 10
Table 4. The results of 5000 trials during which the passer uses the DT to choose the
receiver. Results are given in percentages of the number of cases falling within each
confidence interval (shown in parentheses).

L3: Pass Selection — a collaborative and adversarial team behavior.
Third, the agents use their learned pass-evaluation capability hy to create the
input space and output set for learning pass selection.? When an agent has
the ball, it must decide to which teammate it should pass the ball.® Such a
decision depends on a huge amount of information including the agent’s current
location on the field, the current locations of all the teammates and opponents,
the teammates’ abilities to receive a pass, the opponents’ abilities to intercept
passes, teammates’ subsequent decision-making capabilities, and the opponents’
strategies. The merit of a particular decision can only be measured by the long-
term performance of the team as a whole. Therefore, we drastically reduce the
input space with the help of the previously learned decision tree, hs: rather
than considering the positions of all of the players on the field, only the pass
evaluations for the possible passes to each teammate are considered.
L3 is defined as follows.

F3 = {Player Position,O2,02,03,...}: The input representation consists
of one coarse geographical component and one action-dependent feature [20]
for each possible pass. The action-dependent features are precisely the result
of ho executed for each possible receiver.

O3 = {shoot} U {Teammates}: The result of a pass selection decision is
either a shot on goal or a pass to a particular teammate.

Ts: Training examples are gathered on-line by individual team members dur-
ing real games. Each individual agent learns in a separate partition of Fj

% The pass most likely to succeed is not in general the best pass strategically.
3 It could also choose to shoot. For the purposes of this behavior, the agents are not
given the option to dribble.



according to its position on the field. Agents learn based on the observed
long-term effects of their actions [17]. For each particular action decision,
the eligible members of O3 are pruned based on hy: only passes predicted to
succeed are considered.

M3 = TPOT-RL: For training pass selection, we use TPOT-RL [20], an on-
line, multiagent, reinforcement learning method motivated by Q-learning
that is applicable in team-partitioned, opaque-transition domains such as
simulated robotic soccer. We use the default parameters as reported in [20].

hs = a distributed pass-selection policy: We test the pass-selection learn-
ing by directly comparing two teams with identical behaviors other than their
pass-selection policies. Agents on both teams begin by passing randomly, but
agents on one team adjust their behavior based on experience using TPOT-
RL. The other agents continue passing randomly. Figure 2 demonstrates the
effectiveness of the learned passing policies. Additional tests against goal-
directed opponents are reported in [20].

Cumulative Goals vs. Game Number
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Fig. 2. Total goals scored by a learning team playing against a randomly passing team.
The independent variable is the number of 10-minute games that have elapsed.

5 Discussion

In this section, we analyze the key benefits and limitations of layered learning.
We also present empirical results of our overall layered learning implementation.

5.1 Analysis

The three learned layers described in Section 4 illustrate the four principles of
the layered learning paradigm from Section 2:

1. The decomposition of the task into smaller subtasks enables the learning of
a more complex behavior than is possible when learning straight from the
agents’ sensory inputs.

Indeed, there have been two attempts at monolithic learning of agent behav-
iors in the soccer server. First, Luke et al. [11] set out to create a completely
learned team of agents using genetic programming [9]. However, the ambition
was eventually scaled back and low-level player skills were created by hand as



the basis for learning. The resulting learned team won two of its four games at
the international RoboCup-97 robotic soccer simulator competition, losing
in the second round. The following year, at RoboCup-98, another genetic
programming attempt at learning the entire team behavior was made [1].
This time, the agents were indeed allowed to learn directly from their sen-
sory input representation. While making some impressive progress given the
challenging nature of the approach, this entry was unable to advance past
the first round in the tournament.

2. The hierarchical task decomposition is constructed in a bottom-up, domain-

dependent fashion. The fact that the the task decomposition needs to be pro-
vided to layered learning a priori our paradigm’s main limitations, and it is
this characteristic that leads us to describe layered learning as a “paradigm”
or a “method” as opposed to an “algorithm.” Automatically selecting ab-
stractions for learning is still a challenging open problem.
However, layered learning could be combined with any algorithm for generat-
ing abstraction levels to create an abstraction selection routine. In particular,
let A be an algorithm for generating task decompositions within a domain.
Suppose that A does not have an objective metric for comparing different
decompositions. Applying layered learning on the task decomposition and
quantifying the resulting performance can be used as a measure of the util-
ity of A’s output.

3. Learning methods are chosen or created to suit the subtask. They exploit
available data to train difficult behaviors (ball interception and pass evalu-
ation) or to adapt to changing/unforeseen circumstances (pass selection).
Again, this need to select the ML algorithm by hand is a limitation of layered
learning. Automatically mapping from tasks to ML algorithms is another
challenging open problem in the field. However, the flexibility to use any
algorithm to match the needs of the subtask is an important characteristic
of layered learning. For example, we exploited the ability of neural networks
to learn continuous output values in L; of our robotic soccer implementation,
used C4.5 to ignore irrelevant input features in Lo, and created a multiagent
learning algorithm capable of learning from limited training data in Ls.

4. Learning in one layer feeds into the next layer either by providing a portion
of the behavior used for training (ball interception — pass evaluation) or
by creating the input representation and pruning the action space (pass
evaluation — pass selection).

This last characteristic is a key principle of layered learning. It specifies how
each successive subtask can leverage off of the learning of previous subtasks.

5.2 Results

The layered learning approach has contributed to our success at the first three
international RoboCup robotic soccer competitions.* Although competitions are

* Robust low-level skills and a sophisticated team member agent architecture [19]
also contributed significantly. We thank Patrick Riley for his implementation of the
low-level skills [21].



not controlled testing scenarios and they do not provide means for isolating
the positive and negative aspects of an approach, they do allow for evaluation
of an overall implementation. We present our results at these competitions as
supporting evidence, rather than proof, that layered learning is effective. Note
that all of the individual learned layers described in Section 4 were validated in
controlled experiments.

At the first robotic soccer world cup competition, RoboCup-97 [7], our team
made it to the semi-finals in a field of 29 teams. At RoboCup-98 [2], our team
won in a field of 34 teams. And at RoboCup-99 [22], our team repeated as
champion in a field of 37 teams. Full details of the competitions are available at
www.robocup.org.

6 Related Work

The original hierarchical learning constructs were devised to improve the gener-
alization of a single learning task by running multiple learning processes. Both
boosting [16] and stacked generalization [23] improve function generalization by
combining the results of several generalizers or several runs of the same general-
izer. These approaches contrast with layered learning in that the layers in layered
learning each deal with different tasks. Boosting or stacked generalization could
potentially be used within any given layer, but not across different layers.

More in line with the type of hierarchical learning discussed in this paper
are hierarchical reinforcement learning algorithms. Because of the well-known
“curse of dimensionality” in reinforcement learning RL researchers have been
very interested in hierarchical learning approaches. As surveyed in [6], most
hierarchical RL approaches use gated behaviors:

There is a collection of behaviors that map environment states into low-
level actions and a gating function that decides, based on the state of
the environment, which behavior’s actions should be switched through
and actually executed. [6]

In some cases the behaviors are learned [13], in some cases the gating function
is learned [12], and in some cases both are learned [10]. In this last example,
the behaviors are learned and fixed prior to learning the gating function. On
the other hand, feudal Q-learning [3] and the MAXQ algorithm [4] learn at all
levels of the hierarchy simultaneously. A constant among these approaches is that
the behaviors and the gating function are all control tasks with similar inputs
and actions (sometimes abstracted). In the RL layer of our layered learning
implementation, the input representation itself is learned. In addition, none of
the above methods has been implemented in a large-scale, complex domain.

In all of the above RL approaches, like in layered learning, the task decom-
position is constructed manually. However, there has been at least one attempt
at the challenging task of learning the task decomposition. Nested Q-learning [5]
generates its own hierarchical control structure and then learns low-level skills at
the same time as it learns to select among them. Thus far, like other hierarchical
RL approaches, it has only been tested on very small problems (on the order of
100 states in this case).



7 Conclusion and Future Work

This paper has presented the layered learning paradigm and illustrated it with
a fully-implemented example in the robotic soccer domain. Our layered learning
implementation, along with robust low-level skills and a sophisticated team mem-
ber agent architectures which incorporates a flexible teamwork structure [19],
has contributed to the success of our complete team of simulated robotic soccer
competitions.

An important direction for future work is to apply layered learning in a
new domain. As an example apparently orthogonal to robotic soccer, consider
natural language understanding as another application of layered learning. Nat-
ural language understanding can have a clear hierarchical task decomposition.
For example, learned word sense disambiguation could facilitate learned sen-
tence parsing, which in turn could facilitate semantic encoding of sentences or
paragraphs (see Table 5). While it is currently not possible in general to learn

||Layer| Learning Task ||
L; |Word sense disambiguation
L, Sentence syntax
L3 Sentence semantics

Table 5. Natural language understanding: a proposed layered learning application.

sentence semantics straight from a string of words, a hierarchical decomposition
of the task coupled with the layered learning paradigm may render the learning
task tractable. Indeed, layered learning is potentially applicable to any complex
learning problem for which a hierarchical decomposition exists.

Layered learning is potentially applicable to this and other tasks that are
too complex for monolithic learning. Its power is derived from the concept of
directly combining different ML algorithms within a hierarchically decomposed
task representation.
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