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Representations for
Decision Making

Linear separators
e One-dimensional vs N-dimensional

e Encoded as single-premise rule

Generalization to convex-hull
e Concept bounded by hyper-planes

¢ Encoded as conjunctive rule

Generalization to multiple convex-hulls
¢ Disjunctive Concepts

e Encoded as multiple conjunctive rules
or as decision trees

Evaluation Functions
¢ Linear weighted sums

e Context-sensitive Ccross-terms



LEARNING FROM EXAMPLES.
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Negative

e Incremental vs One - Shot

8 Positive examples with bounded generalization
vs positive + negative examples

® Near - miss analysis
§(Ex, EQ) << S(Egy EL)
@ “Best quess" vs “version spoace” notion

a Generalization vs discrimination

® Internal vs external sample generation

finite valued
@ Descriptors continuum valued
hierarchical

@ Conjunctive vs disjunctive generalization



1 + arx ;+ apx2+a;>0

2D (two attributes)
No Noise

If /,> 0 Then“YES”



2D (two attributes)
No Noise

l] > 0

If & [, >0
&l3>0
&l4>0

Then “YES”



Approximate Concepts

Types of noise in data
¢ Classification noise

¢ Boundary noise

e Systematic errors

Error Functions
e Equi-weight (LO norm)
¢ Distance-weighted (L1 norm)
e [ east Squares (L2 norm)

e Zero-tolerance (L-infinity norm)

Trade-offs

e Concept simplicity vs accuracy
e Overtraining on data (more later)

e Convergence time vs decision-rule form



No constraint on loction of errors



C ]

For instance “most profitable cutomer™

1S ¢ ; : pays interest always on
rotating balance

Or ¢ » : transacts > $5000/month



MACHINE LEARNING TECHNIQUES
WHAT THEY ARE

e Targeted induction of patterns from data

¢ Or, knowledge-compilation (speed-up learning)
e Numeric data, symbolic data, or (typically) both
e Produce decision rules, trees, etc.

e When succeed -- produce idiot-savant systems

APPLICABILITY CRITERIA:

e [arge-enough volumes of training data
(typically 103 to 100 records)

e Well-defined objective function
(e.g. what constitutes fraud, for detection)

e Absence of near-optimal human expertise
(else, expert-system approach is often better)

e Absence of efficient pure-mathematical methods*
(such as linear regression, which are easier)

¢ Induction tools, such as C4.5 or NNets

e Person with skills in induction methods, tools
(and preferably statistics and expert systems)



Machine Learning:
INDUCTIVE Techniques

OBJECTIVE:

Find, categorize, and exploit regularities in large
volumes of potentially noisy numerical and
symbolic data.

TECHNIQUES:

e Concept Formation
(Version spaces, star, ILP, ...)

e Decision-Tree Induction
(ID3, C4.5, CART, ..r)

e Neural Networks
(Backprop, Recurrent, Hopfield, ..e)

e Analogical Generalization
(NNeighbor, CBR, Derivational Analogy, .)

o Numerical Optimization
(Statistical, Reinforcement Learning, -..)



Machine Learning:
Selected Successful Applications

Credit Card Fraud Recovery
e Decision Tree Induction: DB Mining

e Going operational in major bank.
e [Alt Tech: NNets, rules]

Autonomous Land Vehicle
e Knowledge-guided NNet

e Drove across USA 98.2% autonomously

SPHINX and JANUS
e HMMSs, NNets, Lang Mod’s

e Best performance (ARPA, Verbmobil)

Industrial AUTONSs
e Reinforcement Learning, opt.

e Production  efficiency  for  continuous
manufacturing applications



Decision Tree Induction

What are Decision Trees?
¢ Disjunctive concept classifiers

¢ Binary or N-ary class membership

¢ Hyper-rectangle approximators (usually)

What Decision Trees do well
e Can weed out irrelevant attributes

e Noise-tolerant
e Human readable

e Capable of over-training compensation (pruning)

What Decision Trees do NOT do

e Derived attributes (up to knowledge engineer)

¢ Find patterns in uncategorized training data
(a.k.a. "unsupervised learning" a la clustering)
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This 1s what Decision Trees
typically compute (but can be generalized)



Distance

7

N

> 200 Between Less than
Miles 1& 200 1 Mile
Both Serviced Weather Walk
by Airports Conditions
y n Rain/Snow Good
Fl Dri Drive \
=X Save Distance
Less 10 Over 10
Miles Miles

Note that outcomes (e.g. “Drive”) and
tests (e.g. “Distance”) can recurr.



Let S = collection of classified examples, such as
credit-card applints classified as to whether

FUSA will or will not accept them

P, = Proportion of S accepted
P _ = Proportion of S rejected

Define Entropy (s )= -P, log, P, - P;log, P.

Entropy is a measure of the uncertainty in S.
For example, ifp, = 1 & P. = 0, Entropy =0

or if P, =0 & P. = 1, Entrpoy =0
Because there is no uncertainty in S.

However,if P, = P_. = .5, Entropy = 1
Because one bit of information is required

for each element of S to eliminate its
class-member uncertainty.



If there are n classes (rather than just “good“
and “bad” credit risks), then, in general:

n

Entropy (s) = Z - pi log: p;
i=1

Goal of a classifier is to minimize entropy of a
- collection of examples, i.e. to predict
their class with maximal accuracy (=
minimal uncertainty.)




Let each example € S be represented as a set of
atributes and values, e.g.

. -
Applicant 4 income

owns house?
kids

credit-history

| years-in-job
N

Attributes

Question: Given a set { Applicant;}, which
attribute best predicts creditworthi-
ness? (i.e., which reduces entropy

the most?)

20,000

N

medium

2

\

Values
(numeric, boolean, symbolic)

/



Sub-collection of S

Information Porportions of S
where value (A)=v

Gain where A takes the value v;

\ -
| S vl 1
Gain (S,A) = ES)- 2 L E(Sw)

4 \ vi=1\ IS/ \

Collection ) Entropy of

-———

of examples \ Entropy of S sub-collection
S Vi
Attribute
Sum over

each value of
A presentin S

Goal Choose A among {A; } such that Gain
(S,A) is maximized, for collection S.



1. E(S) < MinEntropy
output largest-class-in-S & Halt

2. Let A = Argmax Gain (A, S)
Aj €A

3. Call D-Tree recursively on each value of
Ain S |
D-Tree (SAj - Vi)
& D-Tree (S, -v»)

4. Assemble results of 3 creating a new node
spitting on values of A & return D-Tree



Mutual Information

Useful in:

e A feature space: fy, fH, ..., I,
¢ Training instances: n-vectors of feature values

¢ Find predictive correlation among features

Intuitive definition

The degree to which features f; and fj mutually predict

each other -- measured as number of bits of additional
information in fj, given f;)

Naive formulation [Fano, Church]

P(f £

iil J)
MI(f;,£5) = log;

P(fi)P(fj)

Since: P(£;,£f;) = P(£;)P(£4]|£;)

P(fl)P(fjlfl) P(fjlfl)
MI = log,

=|
P(£;)P(£5) 3 P(£f5)



Mutual Information [Cont.]

Complete formulation [Michie, ...]

P(fi ’fj)
MI(fi,fj) = P(fi'fj) log,

Val(g; 62 P(£5)P(£5)

d

Relation to Information Gain

e et C be just one feature in vector: fJ

e Generalize: use all-but-jth feature to predict jth-
feature

e Generalize to use m-of-n features to predict
remaining features



Data for Inducing Creditworthiness
in New Card Applications

Acct. Income Job Deling Max Oowns Credit Final
numb. in K/yr Now? accts cycles home? years disp.
1001 25 Y 1 1 N 2 Y
1002 60 Y 3 2 Y 5 N
1003 ? N 0 0 N 2 N
1004 52 Y 1 2 N 9 Y
1005 75 Y 1 6 Y 3 Y
1006 29 Y 2 1 Y 1 N
1007 48 Y 6 4 Y 8 N
1008 80 Y 0 0 Y 0 Y
1009 31 Y 1 1 N 1 Y
1011 45 Y ? 0 ? 7 Y
1012 59 ? 2 4 N 2 N
1013 10 N 1 1 N 3 N
1014 51 Y 1 3 Y 1 Y
1015 65 N 1 2 N 8 Y
1016 20 N 0 0 N 0 N
1017 55 Y 2 3 N 2 N
1018 40 N 0 0 Y 1 Y
1019 80 Y 1 1 Y 0 Y
1021 18 Y 0 0 N 4 Y
1022 53 Y 3 2 Y 5 N
1023 0 N 1 1 Y 3 N
1024 90 N 1 3 Y 1 Y
1025 51 Y 1 2 N 7 Y
1026 20 N 4 1 N 1 N
1027 32 Y 2 2 N 2 N
1028 40 Y 1 1 Y 1 Y
1029 31 Y 0 0 N 1 Y
1031 45 Y 2 1 Y 4 Y
1032 90 ? 3 4 ? ? N
1033 30 N 2 1 Y 2 N
1034 88 Y 1 2 Y 5 Y
1035 65 Y 1 4 N 5 Y
1036 12 N 1 1 N 1 N
1037 28 Y 3 3 Y 2 N
1038 66 ? 0 0 ? ? Y
1039 50 Y 2 1 Y 1 Y
1041 ? Y 0 0 Y 8 Y
1042 51 N 3 4 Y 2 N
1043 20 N 0 0 N 2 N
1044 80 Y 1 3 Y 7 Y
1045 51 Y 1 2 N 4 Y
1046 22 ? ? ? N 0 N
1047 39 Y 3 2 ? 4 N
1048 70 Y 0 0 ? 1 Y
1049 40 Y 1 1 Y 1 Y



