Introduction to Machine Learning

Håkan Younes CS15-381, Fall 2001

What is Machine Learning?

What does it mean for a machine (computer program) to learn?

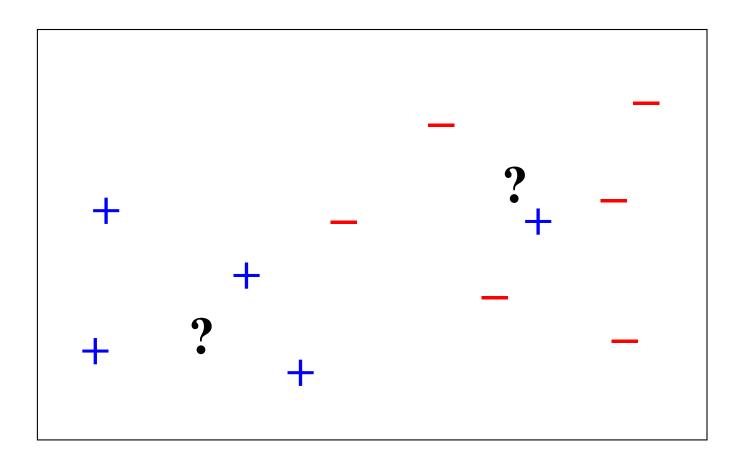
- Machine Learning is the study of computer programs that automatically improve with experience
- Machine Learning is not open-ended discovery

Learning by Caching

- Store instances when they are first encountered
- Retrieve value of instance from memory when queried
- No attempt made to generalize knowledge

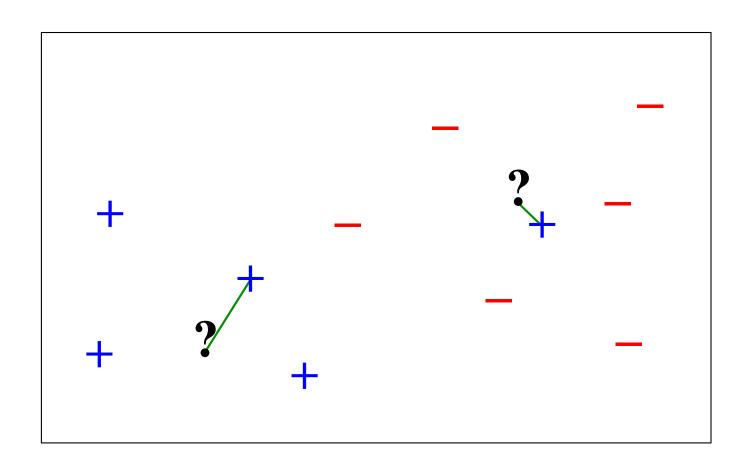
What if query instance is not in memory?

Are the ?'s positive or negative?



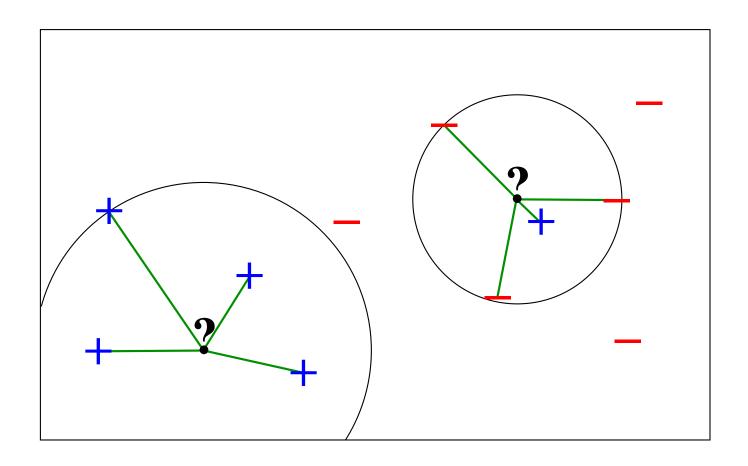
Nearest Neighbor

Assign same value as the nearest neighbor:



k-Nearest Neighbor

Majority of k nearest neighbors (e.g. k = 4):



Alternatively: weight influence of neighbors by inverse of square distance

Types of Machine Learning Algorithms

- Classification (learning discrete valued function)
 - e.g. nearest neighbor, perceptrons, decision trees, naive Bayes
- Learning continuous valued function
 - e.g. Locally weighted regression, neural networks
- Reinforcement learning
 - e.g. Q-learning, TD-learning
- Version spaces

Classification

Characteristics of a classification problem:

- Instances are represented by attribute-value pairs
- Target function has discrete output values
 - e.g. boolean classification (yes or no)

Example: *PlayTennis*

• Concept: *PlayTennis*

• Known instances:

Outlook	Humidity	Wind	PlayTennis
Overcast	High	Weak	Yes
Sunny	High	Weak	Yes
Sunny	Normal	Strong	No
Rain	High	Strong	No
Rain	Normal	Weak	Yes

• Query instance:

 $\langle Outlook = Overcast, Humidity = Normal, Wind = Strong \rangle$

Nearest Neighbor for *PlayTennis* **Example**

What distance function should we use?

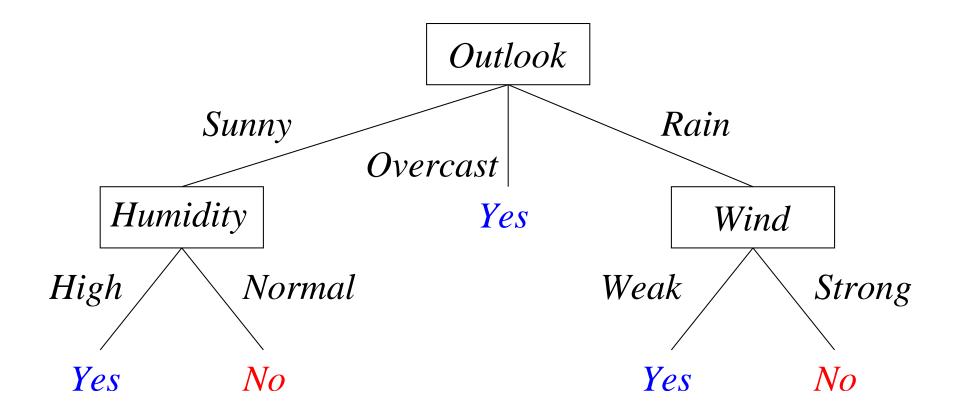
Using number of differing attribute values:

Nearest neighbor is

 $\langle Outlook = Sunny, Humidity = Normal, Wind = Strong \rangle$

• Value of *PlayTennis*: No

Decision Tree for *PlayTennis* **Example**



Decision Trees

Decision tree representation:

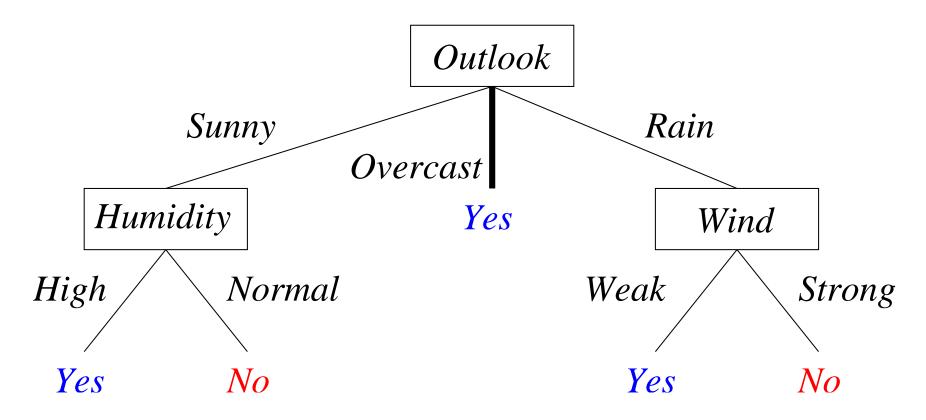
- Internal nodes represent attributes
- Branches out of a node represent possible values
- Terminal nodes represent classifications

Classify an instance by following a path from the root to a terminal node

Decision Tree for PlayTennis Example

Query instance:

 $\langle Outlook = Overcast, Humidity = Normal, Wind = Strong \rangle$



Value of *PlayTennis*: Yes

Constructing Decision Trees

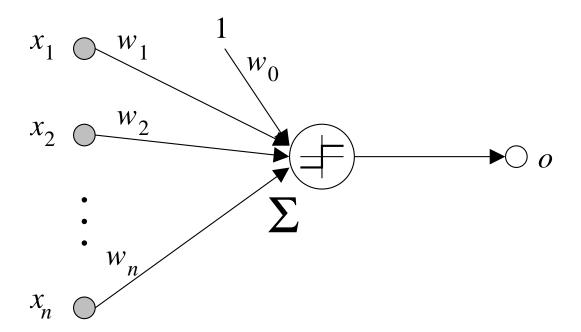
- If all instances have same classification, create terminal node
- Otherwise, choose an attribute a for root node
- For each value v, create decision tree recursively for instances such that value of a is v

Decision Trees and Information Theory

- Decision tree will look different depending on which attribute is chosen for each node
- Small decision tree desirable (Occam's razor)
- NP-hard to find minimal decision tree
- Greedy heuristic: choose attribute that reduces entropy the most

Perceptrons

- Modelled after neurons
- Binary classifier



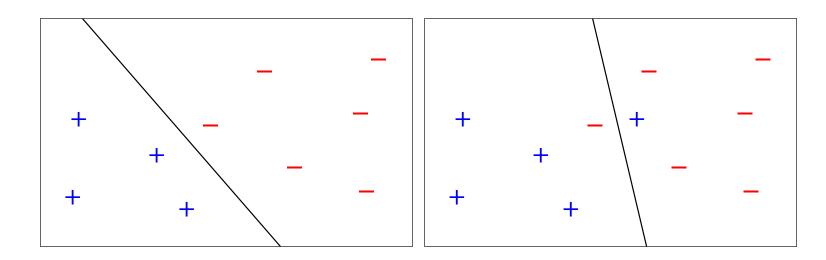
Training a Perceptron

Select weights w_0, \ldots, w_n minimizing the square error summed over the training instances:

$$E = \frac{1}{2} \sum_{x \in D} (o(x) - t(x))^2$$

Linear Separability

Possible hypotheses learned by perceptron for two different training sets:



(cf. linear regression)

Locally Weighted Regression

- Perceptron learning constructs a global hypothesis
- Nearest neighbor learning constructs hypothesis for each query instance
- Distance weighted nearest neighbor can be viewed as locally weighted regression

Reinforcement Learning

Reinforcement learning is used to learn policies

- Robot controller
- Game playing (e.g. checkers, backgammon)

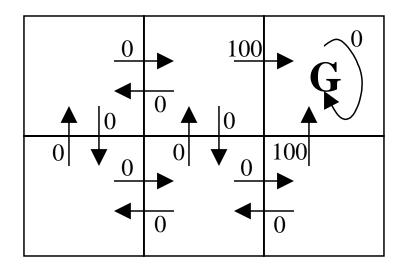
Policies and Reward

A policy is a function from states to actions

$$\pi:S\to A$$

• Reward is given when when an action leads to a desirable state

Reinforcement Learning: Example



Issues in Reinforcement Learning

- Delayed reward
- Exploration vs. exploitation
- Partially observable states

Version Spaces

The version space consists of all plausible hypotheses

Question: Can we find a compact representation?

Most General and Most Specific Hypotheses

Positive instance:

(Overcast, High, Weak)

Most general hypothesis:

$$\langle ?, ?, ? \rangle$$

Most specific hypothesis:

(Overcast, High, Weak)

Evaluating Machine Learning Algorithms

- How representative are the training instances?
- Danger of overfitting

Validation Sets

- Split instances into training set and validation set
- Construct hypothesis from training set
- Evaluate performance on validation set

Cross Validation

- Sometimes training instances are hard to come by
- Split instances into k disjoint sets
- Perform k validations with a different validation set each time

