
Internetworking

Randal E. Bryant
CS347 Lecture 25

April 21, 1998

Topics
• Internetworks
• Internet protocol stack
• ARP
• TCP
• IP
• Sockets interface

CS 347 S’98– 2 –

Internetworks
Def: An internetwork (internet for short) is an

interconnected collection of networks

internet

host

host

host

host

CS 347 S’98– 3 –

Building an internet

X Y Z

network 2 (ECE)

adaptor adaptoradaptor

A B C

network 1 (SCS)

adaptor adaptoradaptor

We start with two separate, unconnected computer networks (subnets),
which are at different locations, and possibly built by different vendors.

Ethernet ATM

Question: How to present the illusion of one network?

CS 347 S’98– 4 –

Building an internet (cont)

X Y Z

network 2 (ECE)

adaptor adaptoradaptor

A B C (gateway/router)

network 1 (SCS)

adaptor adaptoradaptor

Next we connect one of the computers
(in this case computer C) to each of the networks.

adaptor

CS 347 S’98– 5 –

Building an internet (cont)

X Y Z

network 2 (ECE)

adaptor adaptoradaptor

A B C (gateway/router)

network 1 (SCS)

adaptor adaptoradaptor adaptor

128.2.250.1

Finally, we run a software implementation of the Internet Protocol (IP)
on each computer. IP provides a global name space for the hosts,
routing messages between network1 and network 2 if necessary.

IP addresses:
128.2.250.0
128.2.80.0128.2.250.2 128.2.80.1 128.2.80.2 128.2.80.3

CS 347 S’98– 6 –

Building an internet (cont)

internet

128.2.250.1

128.2.80.3

128.2.80.1

128.2.250.0
128.2.80.3

128.2.250.2 128.2.80.2

At this point we have an internet consisting of 6 computers built from
2 original networks. Each computer on our internet can communicate
with any other computer. IP provides the illusion that there is just
one network.

CS 347 S’98– 7 –

Internet protocol stack
Berkeley
sockets
interface

Reliable
byte stream
delivery
(process-
process)

Unreliable
best effort
datagram
delivery
(host-host)

Unreliable
best effort
datagram
delivery
(process-
process)

Application (FTP, Telnet, WWW, email)

User datagram protocol
(UDP)

Transmission control protocol
(TCP)

Internet Protocol (IP)

Network interface (ethernet, ATM)

hardware

CS 347 S’98– 8 –

Encapsulation

TCP segment
header

data

data

Ethernet frame
header

IP datagram
header

TCP segment
header

data

IP datagram
header

TCP segment
header

data

Application

TCP

IP

Network interface

CS 347 S’98– 9 –

Internet addresses
Each host x has a physical address P(x) and a unique

IP address I(x).
IP addresses are hierarchical.

• address contains hint about location

3 classes of subnets:
0 1 2 3 4 8 16 24

network host0

31

network host1 0

network host1 1 0

Class A (lots of hosts/network)

Class B

Class C (few hosts/network)

CS 347 S’98– 10 –

Example Internet addresses

0 1 2 3 4 8 16 24

network host0

31

network host1 0

network host1 1 0

Class A (lots of hosts/network)

Class B

Class C (few hosts/network)

Host IP Number Class Network

cs.cmu.edu 128.2.222.173 B 0x0002

cmu.edu 128.2.35.186 B 0x0002

cs.stanford.edu 171.64.64.64 B 0x2640

att.com 192.128.133.151 C 0x008085

CS 347 S’98– 11 –

ARP: Address resolution protocol

Initially:
• Hosts S and R on the same subnet with IP

addresses I(S) and I(R) and physical
addresses P(S) and P(R).

Problem:
• Given I(R), host S wants to discover P(R).

Solution:
• Host S broadcasts triple (I(S), P(S), I(R),???)

on subnet.
• Host R (and only host R) responds with

tuple (I(S), P(S), I(R), P(R))
• Both sender and receiver maintain a

software cache of IP to physical mappings.
• Time out old entries

S R

(I(S), P(S), I(R), ???)

S R

(I(S), P(S), I(R), P(R))

CS 347 S’98– 12 –

IP: Internet protocol

Unreliable, best-effort datagram transfer
• Addressing/routing.
• Fragmentation.
• Time to live.

VER/HL TOS Length

Datagram ID Flags/Frag Off.

TTL Prot. HDR. Checksum

Source IP address

Destination IP address

Options..

VER IP version
HL Header length (in 32-bit words)
TOS Type of service (unused)
Length Datagram length (max 64K bytes)
ID Unique datagram identifier
Flags/Frag Control flags/fragment offset
TTL Time to Live
Prot Higher level protocol (e.g., TCP, UDP)

CS 347 S’98– 13 –

Routing problem

Network

Network

Network

Network

Network

Network Network

Network

Host
Host

Routers

CS 347 S’98– 14 –

Internet routing

Routing decision: translate IP address of final destination
into physical address of next hop.

(1) Extract final destination host IP address from datagram.

(2) Look up final IP address in routing table.
(3) Returns IP address of next hop.

(4) Use ARP to discover corresponding physical address of
next hop.

(5) Forward datagram to next hop.

CS 347 S’98– 15 –

Fragmentation

Different networks have a different maximum transfer
unit (MTU).

A problem can occur if packet is routed onto network
with a smaller MTU.
• e.g. FDDI (4,500B) onto Ethernet (1,500B)

Solution: break packet into smaller fragments.
• each fragment has identifier and sequence number

Destination reassembles packet before handing it up in
the stack.
• alternative would be to reassemble when entering network with larger

MTU

Sender can disable fragmentation using flag.

CS 347 S’98– 16 –

Fragmentation example

Header Data

Header Data Header Header DataData

CS 347 S’98– 17 –

Time to live

Goal: drop packets that are stuck in infinite loop in the
network.

IP Solution: Decrement TTL field in each hop and drop
packet if it reaches 0.
• field initialized by sender
• hop that drops packet notifies sender

CS 347 S’98– 18 –

UDP: User datagram protocol
Uses IP to provide unreliable best effort datagram

delivery.
"Thin layer" over IP

• data corruption protection.

Source Port Dest. Port

Length D. Checksum

CS 347 S’98– 19 –

UDP data corruption protection

Optional end-end checksum.
• protects against any data corruption errors between source and

destination (links, switches/routers, bus)
• does not protect against packet loss, duplication or reordering

Checksum calculation:
• one complement add
• includes pay load plus part of the IP and UDP header
• layering?

CS 347 S’98– 20 –

TCP: Transmission control protocol

Uses IP to provide reliable byte stream delivery.
• stream orientation

– sender transfers stream of bytes; receiver gets identical stream
• virtual circuit connection

– stream transfer analogous to placing phone call
– sender initiates connection which must be accepted by receiver.

• buffered data transfer
– protocol software free to use arbitrary size transfer units

• unstructured streams
– stream is just a sequence of bytes, just like Unix files

• full duplex
– concurrent transfers in both directions along a connection

CS 347 S’98– 21 –

TCP functions
Connections
Sequence numbers
Sliding window protocol
Reliability and congestion control.

Source Port Dest. Port

Sequence Number

Acknowledgment

Hlen/Flags Window

D. Checksum Urgent Pointer

Options..

CS 347 S’98– 22 –

Connections
Connection is fundamental TCP communication

abstraction.
• data sent along a connection arrives in order
• implies allocation of resources (buffers) on hosts

The endpoint of a connection is a pair of integers:
• (IP address, port)

A connection is defined by a pair of endpoints:
• ((128.2.254.139, 1184), (128.10.2.3, 53))

connection
(128.2.254.139, 1184) (128.2.254.139, 1184)

CS 347 S’98– 23 –

Sequence space
Each stream split into a sequence of segments which

are encapsulated in IP datagrams.
Each byte in the byte stream is numbered.

• 32 bit value
• wraps around
• initial values selected at runtime

Each segment has a sequence number.
• indicates the sequence number of its first byte
• Detects lost, duplicate or out of order segments

CS 347 S’98– 24 –

Sliding window protocol (sender)
Sender maintains a “window” of unacknowledged

bytes that it is allowed to send, and a pointer to the
last byte it sent:

current window

Bytes through 2 have been sent and acknowledged (and thus can be discarded)
Bytes 3 -- 6 have been sent but not acknowledged (and thus must be buffered)
Bytes 7 -- 9 have been not been sent but will be sent without delay.
Bytes 10 and higher cannot be sent until the right edge of window moves.

byte stream1 2 3 4 5 6 7 8 9 10 11 ...

left rightcurr

CS 347 S’98– 25 –

Sliding window protocol (receiver)

Receiver acknowledges receipt of a segment with two
pieces of information:
• ACK: the sequence number of the next byte in the contiguous

stream it has already received
• WIN: amount of available buffer space.

ACK indicates that data was received correctly.
• sender can increment left edge of window
• sender can delete data to the left of the window.

WIN indicates that more buffer space was freed up.
• sender can increment the right edge of its window
• sender can transmit more data.

CS 347 S’98– 26 –

Sliding window protocol (example)
Sender Receiver

Application
does 2K write

Application
 does 3K write

Sender
is blocked

Sender may
 send up to 2K

2K, SEQ = 0

ACK=2K, WIN = 2K

Receiver’s buffer

empty

0 4K

2K
2K, SEQ =2K

4K
ACK=4K, WIN = 0

Application
 reads 2KACK=4K, WIN = 2K

2K

1K, SEQ =4K

2K1K

CS 347 S’98– 27 –

Reliability and congestion control
Reliability:

• sender
– saves segments inside its window
– uses timeouts and sequence numbers in ACKS to detect lost

segments.
– retransmit seqments it thinks are lost

• receiver
– uses sequence numbers to assemble segments in order
– also to detect duplicate segments (how might this happen?)

Congestion control
• sender maintains separate separate congestion window
• uses smaller of the two windows
• users “slow start” algorithm to adaptively set congestion window

size.

CS 347 S’98– 28 –

The socket interface

Create a socket csock_fd (socket) Create a master socket msock_fd, which is
ready to accept connection requests on port p
from a client (socket, bind, listen)

Wait for a connection request to arrive on the
master socket msock_fd (select)

Establish connection on slave socket ssock_fd
(accept)

Read and write to/from slave socket ssock_fd
(read, write)

Close the slave socket ssock_fd (close)

Create a connection between csock_fd
and ssock_fd, which is identified by
server address/ port p pair (connect)

Read and write to/from socket csock_fd
(read, write)

Close the socket csock_fd (close)

Client Server

CS 347 S’98– 29 –

Example client code

/* the client writes a sequence of messages to a server */
for (k=0; k<msgs; k++) {
 /* setup a tcp connection with the server */
 sockfd = connectsock(host, PORT, "tcp");

 /* write the data buffer to the socket */
 cnt = sendsock(sockfd, msg.buf, msglen);
 if (cnt < msglen)
 errexit("sendsock failed\n");

 /* take down the connection */
 close(sockfd);
 }

CS 347 S’98– 30 –

Example server code

/* create master socket ready to accept connections
 from client */
 master_sockfd = passivesock(PORT, "tcp");

 /*
 * the server loops forever, waiting until a conn request
 * is pending, opening the connection, reading msg,
 * and closing connection
 */
 while (1) {

 /* loop until a connection request is pending
 on master socket */
 ready = 0;
 while (ready < 1) {
 ready = readysock(master_sockfd);
 if (ready == 0) sleep(1);
 }

 /* establish the pending connection */
 arch_starttimer(&st);
 slave_sockfd = acceptsock(master_sockfd);
 if (slave_sockfd < 0)
 errexit("accept failed\n");

/* read the data into a buffer */
 cnt = recvsock(slave_sockfd, msg.buf,
 MAX_BUF);
 if (cnt < 0)
 errexit("recvsock failed\n");

 /* take down the connection */
 close(slave_sockfd);

 } /* end while(1) */

CS 347 S’98– 31 –

Key Themes in (Inter)Networking
Protocol Layering

• Way to structure complex system
• Handle different concerns at different layers

Must Cope with Imperfect Environment
• Packets get corrupted & lost

No One has Complete Routing Table
• Too many hosts
• Hosts continually being added and removed
• In the future, they will start moving around

