
High Performance
Processor Implementations

CS 347
April 7 & 9, 1998

Intel Processors
• 486, Pentium, Pentium Pro

Superscalar Processor Design
• Use PowerPC 604 as case study
• Speculative Execution, Register Renaming, Branch Prediction

More Superscalar Examples
• MIPS R10000
• DEC Alpha 21264

CS 347 S’98– 2 –

Intel x86 Processors

Processor Year Transistors MHz Spec92 (Int/FP) Spec95 (Int/FP)
8086 ‘78 29K 4

Basis of IBM PC & PC-XT

i286 ‘83 134K 8
Basis of IBM PC-AT

i386 ‘86 275K 16
‘88 33 6 / 3

i486 ‘89 1.2M 20
50 28 / 13

Pentium ‘93 3.1M 66 78 / 64
150 181 / 125 4.3 / 3.0

PentiumPro ‘95 5.5M 150 245 / 220 6.1 / 4.8
200 320 / 283 8.2 / 6.0

Pentium II ‘97 7.5M 300 11.6 / 6.8
Merced ‘98? 14M ? ? ?

CS 347 S’98– 3 –

Other Processors

Processor Year Transistors MHz Spec92 Spec95
MIPS R3000 ‘88 25 16.1 / 21.7

(DecStation 5000/120)
MIPS R5000 3.6M 180 4.1 / 4.4

(Wean Hall SGIs)
MIPS R10000 ‘95 5.9M 200 300 / 600 8.9 / 17.2

(Most Advanced MIPS)
Alpha 21164a ‘96 9.3M 417 500 / 750 11 / 17

500 12.6 / 18.3
(Fastest Available)

Alpha 21264 ‘97 15M 500 30 / 60
(Fastest Announced)

CS 347 S’98– 4 –

Architectural Performance

Metric
• SpecX92/Mhz: Normalizes with respect to clock speed
• But … one measure of good arch. is how fast can run clock

Sampling
Processor MHz SpecInt92 IntAP SpecFP92 FltAP

i386/387 33 6 0.2 3 0.1
i486DX 50 28 0.6 13 0.3
Pentium 150 181 1.2 125 0.8
PentiumPro 200 320 1.6 283 1.4
MIPS R3000A 25 16.1 0.6 21.7 0.9
MIPS R10000 200 300 1.5 600 3.0
Alpha 21164a 417 500 1.2 750 1.8

CS 347 S’98– 5 –

x86 ISA Characteristics

Multiple Data Sizes and Addressing Methods
• Recent generations optimized for 32-bit mode

Limited Number of Registers
• Stack-oriented procedure call and FP instructions
• Programs reference memory heavily (41%)

Variable Length Instructions
• First few bytes describe operation and operands
• Remaining ones give immediate data & address displacements
• Average is 2.5 bytes

CS 347 S’98– 6 –

i486 Pipeline

Fetch
• Load 16-bytes of instruction into prefetch buffer

Decode1
• Determine instruction length, instruction type

Decode2
• Compute memory address
• Generate immediate operands

Execute
• Register Read
• ALU operation
• Memory read/write

Write-Back
• Update register file

CS 347 S’98– 7 –

Pipeline Stage Details

Fetch
• Moves 16 bytes of instruction stream into code queue
• Not required every time

– About 5 instructions fetched at once
– Only useful if don’t branch

• Avoids need for separate instruction cache

D1
• Determine total instruction length

– Signals code queue aligner where next instruction begins
• May require two cycles

– When multiple operands must be decoded
– About 6% of “typical” DOS program

CS 347 S’98– 8 –

Stage Details (Cont.)

D2
• Extract memory displacements and immediate operands
• Compute memory addresses

– Add base register, and possibly scaled index register
• May require two cycles

– If index register involved, or both address & immediate operand
– Approx. 5% of executed instructions

EX
• Read register operands
• Compute ALU function
• Read or write memory (data cache)

WB
• Update register result

CS 347 S’98– 9 –

Data Hazards

Data Hazards
Generated Used Handling
ALU ALU EX–EX Forwarding
Load ALU EX–EX Forwarding
ALU Store EX–EX Forwarding
ALU Eff. Address (Stall) + EX–ID2 Forwarding

CS 347 S’98– 10 –

Control Hazards

Jump Instruction Processsing
• Continue pipeline assuming branch not taken
• Resolve branch condition in EX stage
• Also speculatively fetch at target during EX stage

ID1 ID2 EXJump Instr.

ID1 ID2Jump +1

ID1Jump +2

FetchTarget

CS 347 S’98– 11 –

Control Hazards (Cont.)

Branch taken
• Flush instructions in pipe
• Begin ID1 at target.
• Total of 3 cycles for instruction

Branch Not Taken
• Allow pipeline to continue.
• Total of 1 cycle for instruction

ID1 ID2 EXJump Instr.

ID1 ID2Jump +1

ID1Jump +2

FetchTarget

EX

ID2

(Flushed)

Jump +3 ID1

ID1 ID2 EXJump Instr.

ID1 ID2Jump +1

ID1Jump +2

FetchTarget

(Flushed)

ID1

(Flushed)

CS 347 S’98– 12 –

Comparison with Our pAlpha Pipeline

Two Decoding Stages
• Harder to decode CISC instructions
• Effective address calculation in D2

Multicycle Decoding Stages
• For more difficult decodings

• Stalls incoming instructions

Combined Mem/EX Stage
• Avoids load stall without load delay slot

– But introduces stall for address computation

CS 347 S’98– 13 –

Comparison to 386

Cycles Per Instruction
Instruction Type 386 Cycles 486 Cycles
Load 4 1
Store 2 1
ALU 2 1
Jump taken 9 3
Jump not taken 3 1
Call 9 3

Reasons for Improvement
• On chip cache

– Faster loads & stores
• More pipelining

CS 347 S’98– 14 –

Pentium Block Diagram

(Microcprocessor Report 10/28/92)

Memory
Data
Bus

CS 347 S’98– 15 –

Pentium Pipeline

Fetch & Align Instruction

Decode Instr.
Generate Control Word

Decode Control Word
Generate Memory Address

Access data cache or
calculate ALU result

Write register result

Decode Control Word
Generate Memory Address

Access data cache or
calculate ALU result

Write register result

U-Pipe V-Pipe

CS 347 S’98– 16 –

Superscalar Execution

Can Execute Instructions I1 & I2 in Parallel if:
• Both are “simple” instructions

– Don’t require microcode sequencing
– Some operations require U-pipe resources
– 90% of SpecInt instructions

• I1 is not a jump
• Destination of I1 not source of I2

– But can handle I1 setting CC and I2 being cond. jump
• Destination of I1 not destination of I2

If Conditions Don’t Hold
• Issue I1 to U Pipe
• I2 issued on next cycle

– Possibly paired with following instruction

CS 347 S’98– 17 –

Branch Prediction

Branch Target Buffer
• Stores information about previously executed branches

– Indexed by instruction address
– Specifies branch destination + whether or not taken

• 256 entries

Branch Processing
• Look for instruction in BTB
• If found, start fetching at destination
• Branch condition resolved early in WB

– If prediction correct, no branch penalty
– If prediction incorrect, lose ~3 cycles

» Which corresponds to > 3 instructions
• Update BTB

CS 347 S’98– 18 –

Superscalar Terminology

Basic
Superscalar Able to issue > 1 instruction / cycle
Superpipelined Deep, but not superscalar pipeline.

E.g., MIPS R5000 has 8 stages
Branch prediction Logic to guess whether or not branch will be taken,

and possibly branch target

Advanced
Out-of-order Able to issue instructions out of program order
Speculation Execute instructions beyond branch points, possibly

nullifying later
Register renaming Able to dynamically assign physical registers to

instructions
Retire unit Logic to keep track of instructions as they complete.

CS 347 S’98– 19 –

Superscalar Execution Example

Assumptions
• Single FP adder takes 2 cycles
• Single FP multipler takes 5 cycles
• Can issue add & multiply

together

• Must issue in-order

v: addt $f2, $f4, $f10

w: mult $f10, $f6, $f10

x: addt $f10, $f8, $f12

y: addt $f4, $f6, $f4

z: addt $f4, $f8, $f10

v

w

x

y

(Single adder, data dependence)
(In order)

(inorder)

Data Flow

+ +

*

+

$f2 $f4 $f6

$f4

$f10

$f8

yv

x
z

Critical
Path =

9 cycles

+

w

z

$f12

z

CS 347 S’98– 20 –

Adding Advanced Features

Out Of Order Issue
• Can start y as soon as adder available
• Must hold back z until $f10 not busy & adder available

With Register Renaming

v

w

x

y
z

v

w

x

y

z

v: addt $f2, $f4, $f10

w: mult $f10, $f6, $f10

x: addt $f10, $f8, $f12

y: addt $f4, $f6, $f4

z: addt $f4, $f8, $f10

v: addt $f2, $f4, $f10a

w: mult $f10a, $f6, $f10a

x: addt $f10a, $f8, $f12

y: addt $f4, $f6, $f4

z: addt $f4, $f8, $f10

CS 347 S’98– 21 –

Pentium Pro (P6)

History
• Announced in Feb. ‘95
• Delivering in high end machines now

Features
• Dynamically translates instructions to more regular format

– Very wide RISC instructions
• Executes operations in parallel

– Up to 5 at once
• Very deep pipeline

– 12–18 cycle latency

PentiumPro Block Diagram

– ## –

Microprocessor Report
2/16/95

CS 347 S’98– 23 –

PentiumPro Operation

Translates instructions dynamically into “Uops”
• 118 bits wide
• Holds operation, two sources, and destination

Executes Uops with “Out of Order” engine
• Uop executed when

– Operands available
– Functional unit available

• Execution controlled by “Reservation Stations”
– Keeps track of data dependencies between uops
– Allocates resources

CS 347 S’98– 24 –

Branch Prediction

Critical to Performance
• 11–15 cycle penalty for misprediction

Branch Target Buffer
• 512 entries
• 4 bits of history

• Adaptive algorithm
– Can recognize repeated patterns, e.g., alternating taken–not taken

Handling BTB misses
• Detect in cycle 6
• Predict taken for negative offset, not taken for positive

– Loops vs. conditionals

CS 347 S’98– 25 –

Limitations of x86 Instruction Set

Not enough registers
• too many memory references

Intel is switching to a new instruction set for Merced
– IA-64, joint with HP
– Will dynamically translate existing x86 binaries

CS 347 S’98– 26 –

PPC 604

Superscalar
• Up to 4 instructions per cycle

Speculative & Out-of-Order Execution
• Begin issuing and executing instructions beyond branch

Other Processors in this Category
• MIPS R10000
• Intel PentiumPro & Pentium II
• Digital Alpha 21264

CS 347 S’98– 27 –

604 Block Diagram

Microprocessor
Report
April 18, 1994

CS 347 S’98– 28 –

General Principles

Must be Able to Flush Partially-Executed Instructions
• Branch mispredictions
• Earlier instruction generates exception

Special Treatment of “Architectural State”
• Programmer-visible registers

• Memory locations
• Don’t do actual update until certain instruction should be executed

Emulate “Data Flow” Execution Model
• Instruction can execute whenever operands available

CS 347 S’98– 29 –

Processing Stages

Fetch
• Get instruction from instruction cache

Dispatch (~= Decode)
• Get available operands
• Assign to hardware execution unit

Execute
• Perform computation or memory operation

– Store’s are only buffered

Retire / Commit (~= Writeback)
• Allow architectural state to be updated

– Register update
– Buffered store

CS 347 S’98– 30 –

Fetching Instructions

• Up to 4 fetched from instruction cache in single cycle

Branch Target Address Cache (BTAC)
• Target addresses of recently-executed, predicted-taken branches

– 64 entries
– Indexed by instruction address

• Accessed in parallel with instruction fetch
• If hit, fetch at predicted target starting next cycle

CS 347 S’98– 31 –

Branch Prediction

Branch History Table (BHT)
• 512 state machines, indexed by low-order bits of instruction address
• Encode information about prior history of branch instructions

– Small chance of two branch instructions aliasing
• Predict whether or not branch will be taken

≥ 3 cycle penalty if mispredict

T T T

Yes! Yes? No? No!

NT

T

NT NT

NT

Interaction with BTAC
• BHT entries start in state No!
• When make transition from No? to Yes?, allocate entry in BTAC
• Deallocate when make transition from Yes? to No?

CS 347 S’98– 32 –

Dispatch
• Up to 4 instructions

per cycle
– Assign to

execution units
– Put entry in

retirement buffer
– Assign rename

registers
• Ignore data

dependencies

“Reservation
Stations”

Retirement
Buffer

CS 347 S’98– 33 –

Dispatching Actions

Generate Entry in Retirement Buffer
• 16-entry buffer tracking instructions currently “in flight”

– Dispatched but not yet completed
• Circular buffer in program order
• Instruction tagged with branches they depend on

– Easy to flush if mispredicted

Assign Rename Register as Target
• Additional registers (12 integer, 8 FP) used as targets for in-flight

instructions
• Instruction updates this register
• Update of actual architectural register occurs only when instruction

retired

CS 347 S’98– 34 –

Hazard Handling with Renaming

Dispatch Unit Maintains Mapping
• From register ID to actual register
• Could be the actual architectural register

– Not target of currently-executing instruction
• Could be rename register

– Perhaps already written by instruction that has not been retired
» E.g., still waiting for confirmation of branch prediction

– Perhaps instruction result not yet computed
» Grab later when available

Hazards
• RAW: Mapping identifies operand source
• WAR: Write will be to different rename register
• WAW: Writes will be to different rename register

CS 347 S’98– 35 –

Read-after-Write (RAW) Dependences

Also known as a “true” dependence
Example:

S1: addq r1, r2, r3

S2: addq r3, r4, r4

How to optimize?
• cannot be optimized away

CS 347 S’98– 36 –

Write-after-Read (WAR) Dependences

Also known as an “anti” dependence
Example:

S1: addq r1, r2, r3

S2: addq r4, r5, r1

 ...
addq r1, r6, r7

How to optimize?
• rename dependent register (e.g., r1 in S2 -> r8)

S1: addq r1, r2, r3

S2: addq r4, r5, r8

 ...
addq r8, r6, r7

CS 347 S’98– 37 –

Write-after-Write (WAW) Dependences

Also known as an “output” dependence
Example:

S1: addq r1, r2, r3

S2: addq r4, r5, r3

 ...
addq r3, r6, r7

How to optimize?
• rename dependent register (e.g., r3 in S2 -> r8)

S1: addq r1, r2, r3

S2: addq r4, r5, r8

 ...
addq r8, r6, r7

CS 347 S’98– 38 –

Moving Instructions Around

Reservation Stations
• Buffers associated with execution units
• Hold instructions prior to execution

– Plus those operands that are available
• May be waiting for one or more operands

– Operand mapped to rename register that is not yet available
• May be waiting for unit to be available

Completion Busses
• Results generated by execution units
• Tagged by rename register ID
• Monitored by reservation stations

– So they can get needed operands
– Effectively implements bypassing

• Supply results to completion unit

CS 347 S’98– 39 –

Execution Resources

Integer
• Two units to handle regular integer instructions
• One for “complex” operations

– Multiply with latency 3--4 and throughput once per 1--2 cycles
– Unpipelined divide with latency 20

Floating Point
• Add/multiply with latency 3 and throughput 1
• Unpipelined divide with latency 18--31

Load Store Unit
• Own address ALU
• Buffer of pending store instructions

– Don’t perform actual store until ready to retire instruction
• Loads can be performed speculatively

– Check to see if target of pending store operation

CS 347 S’98– 40 –

Retiring Instructions

Retire in Program Order
• When instruction is at head of buffer
• Up to 4 per cycle
• Enable change of architectural state

– Transfer from rename register to architectural
» Free rename register for use by another instruction

– Allow pending store operation to take place

Flush if Should not be Executed
• Tagged by branch that was mispredicted
• Follows instruction that raised exception
• As if instructions had never been fetched

CS 347 S’98– 41 –

604 Chip

• Originally 200 mm2

– 0.65µm process
– 100 MHz

• Now 148 mm2

– 0.35µm process
– bigger caches
– 300 MHz

• Performance requires
real estate
– 11% for dispatch &

completion units
– 6 % for register files

» Lots of ports

ICACHE DCACHE

DISP &
COMPLETE

FPU

C IU

IU 1 IU 2

Ld/St

Fetch

CS 347 S’98– 42 –

Execution Example
Assumptions

• Two-way issue with renaming
– Rename registers %f0, %f2, etc.

• 1 cycle add.d latency, 2 cycle mult.d

v: addt $f2, $f4, $f10

w: mult $f10, $f6, $f10

x: addt $f10, $f8, $f12

y: addt $f4, $f6, $f4

z: addt $f4, $f8, $f10

Value Rename

10.0$f2 $f2

20.0$f4 $f4

40.0$f6 $f6

80.0$f8 $f8

160.0$f10 $f10

320.0$f12 $f12

ADD

-- -- --

-- -- --

Op1 Op2 Dest

-- --

Result Dest

MULT

-- -- --

-- -- --

Op1 Op2 Dest

-- --

Result Dest

--%f0 --

Value Renames

F

Valid

--%f2 -- F

--%f4 -- F

--%f6 -- F

CS 347 S’98– 43 –

v: addt $f2, $f4, $f10

w: mult $f10, $f6, $f10

x: addt $f10, $f8, $f12

y: addt $f4, $f6, $f4

z: addt $f4, $f8, $f10

Execution Example Cycle 1
Actions

• Instructions v & w issued
– v target set to %f0
– w target set to %f2

Value Rename

10.0$f2 $f2

20.0$f4 $f4

40.0$f6 $f6

80.0$f8 $f8

160.0$f10 %f2

320.0$f12 $f12

--%f0 $f10

Value Renames

F

Valid

--%f2 $f10 F

--%f4 -- F

ADD

10.0 20.0 %f0

-- -- --

Op1 Op2 Dest

-- --

Result Dest

MULT

%f0 40.0 %f2

-- -- --

Op1 Op2 Dest

-- --

Result Dest

--%f6 -- F

v w

CS 347 S’98– 44 –

Execution Example Cycle 2
Actions

• Instructions x & y issued
– x & y targets set to %f4 and %f6

• Instruction v executed

Value Rename

10.0$f2 $f2

20.0$f4 %f6

40.0$f6 $f6

80.0$f8 $f8

160.0$f10 %f2

320.0$f12 %f4

ADD

%f2 80.0 %f4

20.0 40.0 %f6

Op1 Op2 Dest

30.0 %f0

Result Dest

MULT

30.0 40.0 %f2

-- -- --

Op1 Op2 Dest

-- --

Result Dest

30.0%f0 $f10

Value Renames

T

Valid

--%f2 $f10 F

--%f4 $f12 F

--%f6 $f4 F
v

wx

y

v: addt $f2, $f4, $f10

w: mult $f10, $f6, $f10

x: addt $f10, $f8, $f12

y: addt $f4, $f6, $f4

z: addt $f4, $f8, $f10

CS 347 S’98– 45 –

Cycle 3
• Instruction v retired

– But doesn’t change $f10
• Instruction w begins execution

– Moves through 2 stage pipeline
• Instruction y executed
• Instruction z stalled

– Not enough reservation stations

Value Rename

10.0$f2 $f2

20.0$f4 %f6

40.0$f6 $f6

80.0$f8 $f8

160.0$f10 %f2

320.0$f12 %f4

ADD

%f2 80.0 %f4

-- -- --

Op1 Op2 Dest

60.0 %f6

Result Dest

MULT

-- -- --

-- -- --

Op1 Op2 Dest

-- --

Result Dest

--%f0 --

Value Renames

F

Valid

--%f2 $f10 F

--%f4 $f12 F

60.0%f6 $f4 T
y

x

30.0 40.0 %f2 w

v: addt $f2, $f4, $f10

w: mult $f10, $f6, $f10

x: addt $f10, $f8, $f12

y: addt $f4, $f6, $f4

z: addt $f4, $f8, $f10

CS 347 S’98– 46 –

Execution Example Cycle 4

• Instruction w finishes execution
• Instruction y cannot be retired yet
• Instruction z issued

– Assigned to %f0

Value Rename

10.0$f2 $f2

20.0$f4 %f6

40.0$f6 $f6

80.0$f8 $f8

160.0$f10 %f0

320.0$f12 %f4

ADD

120.0 80.0 %f4

60.0 80.0 %f0

Op1 Op2 Dest

-- --

Result Dest

MULT

-- -- --

-- -- --

Op1 Op2 Dest

120.0 %f2

Result Dest

--%f0 $f10

Value Renames

F

Valid

120.0%f2 $f10 T

--%f4 $f12 F

60%f6 $f4 T
w

x

z

v: addt $f2, $f4, $f10

w: mult $f10, $f6, $f10

x: addt $f10, $f8, $f12

y: addt $f4, $f6, $f4

z: addt $f4, $f8, $f10

CS 347 S’98– 47 –

Execution Example Cycle 5

• Instruction w retired
– But does not change $f10

• Instruction y cannot be retired yet
• Instruction x executed

Value Rename

10.0$f2 $f2

20.0$f4 %f6

40.0$f6 $f6

80.0$f8 $f8

160.0$f10 %f0

320.0$f12 %f4

ADD

-- -- --

60.0 80.0 %f0

Op1 Op2 Dest

200.0 %f4

Result Dest

MULT

-- -- --

-- -- --

Op1 Op2 Dest

-- --

Result Dest

--%f0 $f10

Value Renames

F

Valid

--%f2 -- F

200.0%f4 $f12 T

60%f6 $f4 T
x

z

v: addt $f2, $f4, $f10

w: mult $f10, $f6, $f10

x: addt $f10, $f8, $f12

y: addt $f4, $f6, $f4

z: addt $f4, $f8, $f10

CS 347 S’98– 48 –

Execution Example Cycle 6

• Instruction x & y retired
– Update $f12 and $f4

• Instruction z executed

Value Rename

10.0$f2 $f2

60.0$f4 $f4

40.0$f6 $f6

80.0$f8 $f8

160.0$f10 %f0

200.0$f12 $f12

ADD

-- -- --

-- -- --

Op1 Op2 Dest

140.0 %f0

Result Dest

MULT

-- -- --

-- -- --

Op1 Op2 Dest

-- --

Result Dest

140.0%f0 $f10

Value Renames

T

Valid

--%f2 -- F

--%f4 -- F

--%f6 -- F
z

v: addt $f2, $f4, $f10

w: mult $f10, $f6, $f10

x: addt $f10, $f8, $f12

y: addt $f4, $f6, $f4

z: addt $f4, $f8, $f10

CS 347 S’98– 49 –

Execution Example Cycle 7

• Instruction z retired

Value Rename

10.0$f2 $f2

60.0$f4 $f4

40.0$f6 $f6

80.0$f8 $f8

140.0$f10 $f10

320.0$f12 $f12

ADD

-- -- --

-- -- --

Op1 Op2 Dest

-- --

Result Dest

MULT

-- -- --

-- -- --

Op1 Op2 Dest

-- --

Result Dest

--%f0 --

Value Renames

F

Valid

--%f2 -- F

--%f4 -- F

--%f6 -- F

v: addt $f2, $f4, $f10

w: mult $f10, $f6, $f10

x: addt $f10, $f8, $f12

y: addt $f4, $f6, $f4

z: addt $f4, $f8, $f10

CS 347 S’98– 50 –

Living with Expensive Branches

Mispredicted Branch Carries a High Cost
• Must flush many in-flight instructions
• Start fetching at correct target
• Will get worse with deeper and wider pipelines

Impact on Programmer / Compiler
• Avoid conditionals when possible

– Bit manipulation tricks
• Use special conditional-move instructions

– Recent additions to many instruction sets
• Make branches predictable

– Very low overhead when predicted correctly

CS 347 S’98– 51 –

Branch Prediction Example

• Compute sum of absolute
values

• Compute product of original
values

0x6c4: 8c620000 lw r2,0(r3)
0x6c8: 24840001 addiu r4,r4,1
0x6cc: 04410002 bgez r2,0x6d8
0x6d0: 00a20018 mult r5,r2
0x6d4: 00021023 subu r2,r0,r2
0x6d8: 00002812 mflo r5
0x6dc: 00c23021 addu r6,r6,r2
0x6e0: 28820400 slti r2,r4,1024
0x6e4: 1440fff7 bne r2,r0,0x6c4
0x6e8: 24630004 addiu r3,r3,4

static void loop1() {
int i;
data_t abs_sum = (data_t) 0;
data_t prod = (data_t) 1;
for (i = 0; i < CNT; i++) {

data_t x = dat[i];
data_t ax;
ax = ABS(x);
abs_sum += ax;
prod *= x;

}
answer = abs_sum+prod;

}

#define ABS(x) x < 0 ? -x : x

MIPS Code

CS 347 S’98– 52 –

Some Interesting Patterns

PPPPPPPPP
+1 …

• Should give perfect prediction
RRRRRRRRR

-1 -1 +1 +1 +1 +1 -1 +1 -1 -1 +1 +1 -1 -1 +1 +1 +1 +1 +1 -1 -1 -1 +1 -1 …

• Will mispredict 1/2 of the time
N*N[PNPN]
 -1 -1 -1 -1 -1 -1 -1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 …

• Should alternate between states No! and No?
N*P[PNPN]

-1 -1 -1 -1 -1 -1 -1 +1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 …

• Should alternate between states No? and Yes?
N*N[PPNN]

-1 -1 -1 -1 -1 -1 -1 -1 +1 +1 -1 -1 +1 +1 -1 -1 +1 +1 -1 -1 +1 +1 -1 -1 …

N*P[PPNN]
-1 -1 -1 -1 -1 -1 -1 +1 +1 +1 -1 -1 +1 +1 -1 -1 +1 +1 -1 -1 +1 +1 -1 -1 …

CS 347 S’98– 53 –

Loop Performance (FP)

Observations
• 604 has prediction rates 0%, 50%, and 100%

– Expected 50% from N*N[PNPN]
– Expected 25% from N*N[PPNN]
– Loop so tight that speculate through single branch twice?

• Pentium appears to be more variable, ranging 0 to 100%

Special Patterns Can be Worse than Random
– Only 50% of all people are “above average”

R3000 PPC 604 Pentium
Pattern Cycles Penalty Cycles Penalty Cycles Penalty
PPPPPPPPP 13.6 0 9.2 0 21.1 0
RRRRRRRRR 13.6 0 12.6 3.4 22.9 1.8
N*N[PNPN] 13.6 0 15.8 6.6 23.3 2.2
N*P[PNPN] 13.3 -0.3 15.9 6.7 24.3 3.2
N*N[PPNN] 13.3 -0.3 12.5 3.3 23.9 2.8
N*P[PPNN] 13.6 0 12.5 3.3 24.7 3.6

CS 347 S’98– 54 –

Loop 1 Surprises

Pentium II
• Random shows clear penalty

• But others do well
– More clever prediction algorithm

R10000
• Has special “conditional move” instructions
• Compiler translates a = Cond ? Texpr : Fexpr into

a = Fexpr

temp = Texpr

CMOV(a, temp, Cond)

• Only valid if Texpr & Fexpr can’t cause error

R10000 Pentium II
Pattern Cycles Penalty Cycles Penalty
PPPPPPPPP 3.5 0 11.9 0
RRRRRRRRR 3.5 0 19 7.1
N*N[PNPN] 3.5 0 12.5 0.6
N*P[PNPN] 3.5 0 13 1.1
N*N[PPNN] 3.5 0 12.4 0.5
N*P[PPNN] 3.5 0 12.2 0.3

CS 347 S’98– 55 –

P6 Branch Prediction

Two-Level Scheme
• Yeh & Patt, ISCA ‘93
• Keep shift register showing past k outcomes for branch
• Use to index 2k entry table
• Each entry provides 2-bit, saturating counter predictor
• Very effective for any deterministic branching pattern

Microprocessor Report
 March 27, 1995

CS 347 S’98– 56 –

Branch Prediction Comparisons

Microprocessor Report March 27, 1995

CS 347 S’98– 57 –

Effect of Loop Unrolling

Observations
• [PNPN] yields PPPP … for one branch, NNNN … for the other
• [PPNN] yields PNPN … for both branches

– 50% accuracy if start in state No?
– 25% accuracy if start in state No!

Another stressor in the life of a benchmarker
• Must look carefully at what compiler is doing

PPC 604e 1X PPC 604e 2X
Pattern Cycles Penalty Cycles Penalty
PPPPPPPPP 9.2 0 7.7 0
RRRRRRRRR 12.6 3.4 11.3 3.6
N*N[PNPN] 15.8 6.6 7.6 0
N*P[PNPN] 15.9 6.7 7.7 0
N*N[PPNN] 12.5 3.3 11.3 3.6
N*P[PPNN] 12.5 3.3 13.1 5.4

CS 347 S’98– 58 –

MIPS R10000

(See attached handouts.)

More info available at:
• http://www.sgi.com/MIPS/products/r10k

CS 347 S’98– 59 –

DEC Alpha 21264

Fastest Announced Processor
• Spec95: 30 Int 60 FP
• 500 MHz, 15M transistors, 60 Watts

Fastest Existing Processor is Alpha 21164
• Spec95: 12.6 Int 18.3 FP

• 500 MHz, 9.2M transistors, 25 Watts

Uses Every Trick in the Book
• 4–6 way superscalar
• Out of order execution with renaming
• Up to 80 instructions in process simultaneously
• Lots of cache & memory bandwidth

CS 347 S’98– 60 –

21264 Block Diagram
4 Integer ALUs

• Each can perform simple
instructions

• 2 handle address
calculations

Register Files
• 32 arch / 80 physical Int
• 32 arch / 72 physical FP
• Int registers duplicated

– Extra cycle delay from
write in one to read in
other

– Each has 6 read ports, 4
write ports

– Attempt to issue
consumer to producer
side Microprocessor Report 10/28/96

CS 347 S’98– 61 –

21264 Pipeline

Microprocessor Report 10/28/96

Very Deep Pipeline
• Can’t do much in 2ns

clock cycle!
• ≥ 7 cycles for simple

instruction
• ≥ 9 cycles for load or

store
• ≥ 7 cycle penalty for

mispredicted branch
– Elaborate branch

predication logic
– Claim 95% accuracy

CS 347 S’98– 62 –

21264 Branch Prediction Logic

• Purpose: Predict whether or not branch taken
• 35Kb of prediction information
• 2% of total die size
• Claim 0.7--1.0% misprediction

CS 347 S’98– 63 –

Processor Comparisons

Microprocessor Report 12/30/96

CS 347 S’98– 64 –

Challenges Ahead

Diminishing Returns on Cost vs. Performance
• Superscalar processors require instruction level parallelism
• Many programs limited by sequential dependencies

Finding New Sources of Parallelism
• e.g., thread-level parallelism

Getting Design Correct Difficult
• Verfication team larger than design team
• Devise tests for interactions between concurrent instructions

– May be 80 executing at once

CS 347 S’98– 65 –

New Era for Performance Optimization

Data Resources are Free and Fast
• Plenty of computational units
• Most programs have poor utilization

Unexpected Changes in Control Flow Expensive
• Kill everything downstream when mispredict

• Even if will execute in near future where branches reconverge

Think Parallel
• Try to get lots of things going at once

Not a Truly Parallel Machine
• Bounded resources
• Access from limited code window

