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Topics
• page tables
• TLBs
• Alpha 21064 memory system
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Levels in a Typical Memory Hierarchy
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Virtual Memory

Main memory can act as a cache for the secondary storage (disk)

Advantages:
• illusion of having more physical memory
• program relocation 
• protection
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Virtual Memory (cont)
Provides illusion of very large memory
 – sum of the memory of many jobs greater than physical memory
 – address space of each job larger than physical memory

Allows available (fast and expensive) physical memory to be 
 very well utilized

Simplifies memory management (main reason today)

Exploits memory hierarchy to keep average access time low.

Involves at least two storage levels: main  (RAM)  and secondary (disk)

Virtual Address --  address used by the programmer

Virtual Address Space --  collection of such addresses

Physical Address --  address of word in physical memory
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Virtual Address Spaces

Process 1:

Virtual addresses (VA)
Physical addresses (PA)

vir.  page

Process 2:

phy. page
address translation

Key idea: virtual and physical address spaces are divided into equal-sized
blocks known as “virtual pages” and “physical pages (page frames)”

What if the virtual address spaces are bigger than the physical address space?
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VM as part of the memory hierarchy
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VM address translation
V = {0, 1, . . . , n - 1}   virtual address space
M = {0, 1, . . . , m - 1}  physical address space

MAP:  V -->  M  U  {0}  address mapping function

n > m

MAP(a)  =  a'  if data at virtual address a is present at physical 
                           address a'  and  a' in M

              =  0  if data at virtual address a is not present in M

Processor
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Addr Trans
Mechanism

fault
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memory

a

a
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0

missing item fault

physical address OS performs
this transfer
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VM address translation

virtual page number page offset

virtual address

physical page number page offset

physical address

011

address translation

1229

31 01112

Notice that the page offset bits don't change as a result of translation
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Address translation with a page table

virtual page number page offset

virtual address

physical page number page offset

physical address

0111229

31 01112
page table register

if valid=0
then page
is not in memory
and page fault exception

valid physical page numberaccess
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Page Tables
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Address translation with a page table
(cont)

separate page table(s) per process

If  V = 1
    then page is in main memory at frame address stored in table
    else address is location of  page in secondary memory

Access Rights
    R = Read-only,  R/W = read/write,  X = execute only

If kind of access not compatible with specified access rights,
    then protection_violation_fault

If valid bit not set then page fault

Protection Fault:  access rights violation;  causes trap to hardware,
      microcode, or software fault handler

Page Fault:  page not resident in physical memory, also causes trap;
      usually accompanied by a context switch:  current process
      suspended while page is fetched from secondary storage
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VM design issues

Everything driven by enormous cost of misses:
• hundreds of thousands of clocks.
• vs units or tens of clocks for cache misses.
• disks are high latency, low bandwidth devices (compared to memory)
• disk performance: 10 ms access time,  10 MBytes/sec transfer rate

Large block sizes:
• 4KBytes - 16 KBytes are typical
• amortize high access time 
• reduce miss rate by exploiting locality
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VM design issues (cont)

Fully associative page placement:
• eliminates conflict misses
• every miss is a killer, so worth the lower hit time

Use smart replacement algorithms
• handle misses in software

• miss penalty is so high anyway, no reason to handle in hardware
• small improvements pay big dividends

Write back only:
• disk access too slow to afford write through + write buffer
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Integrating VM and cache

CPU
Trans-
lation

Cache Main
Memory

VA PA miss

hit
data

It takes an extra memory access to translate VA to PA. bummer!

Why not address cache with VA?
Aliasing problem: 2 virtual addresses that point to the 
same physical page. 
Result: two cache blocks for one physical location 

Solutions: 
hardware to check for multiple hits and update multiple
entries (expensive)

index cache with low order VA bits that don’t change during
translation. (requires small caches or OS support such as page 
coloring)
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Speeding up translation with a TLB
A translation lookaside buffer (TLB)  is a small, usually 
fully associative cache, that maps virtual page numbers to  
physical page numbers.

CPU
TLB

Lookup
Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss
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Address translation with a TLB

virtual addressvirtual page number page offset

physical address

31 01112

valid physical page numbertag
valid
dirty

valid
valid
valid

valid tag data

data
=

cache hit

tag byte offsetindex

=

TLB hit
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Alpha AXP 21064 TLB

page size: 8KB
block size: 1 PTE (8 bytes)
hit time: 1 clock
miss penalty: 20 clocks
TLB size: ITLB 8 PTEs, 
                DTLB 32 PTEs
replacement: random(but
                not last used)
placement: Fully assoc
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Mapping an Alpha 21064 virtual address

PTE size: 
8 Bytes

13 bits10 bits

PT size: 
1K PTEs (8 KBytes)

13 bits

21 bits
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Alpha AXP 21064

memory hierarchy

cache block size: 32 bytes
page size: 8 KBytes
virtual address size: 43 bits
physical address size: 34 bits

8 entries

256 32-byte blocks 
8 KBytes
direct mapped

32 entries

256 32-byte
 blocks 
8 KBytes
direct mapped
write through
no write alloc

4 entries64K 32-byte blocks 
2 MBytes
direct mapped
write back
write allocate
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Modern Systems
Characteristic Intel Pentium Pro PowerPC 604
Virtual address 32 bits 52 bits
Physical address32 bits 32 bits
Page size 4 KB, 4 MB 4 KB, selectable, and 256 MB
TLB organizationA TLB for instructions and a TLB for data A TLB for instructions and a TLB for data

Both four-way set associative Both two-way set associative
Pseudo-LRU replacement LRU replacement
Instruction TLB: 32 entries Instruction TLB: 128 entries
Data TLB: 64 entries Data TLB: 128 entries
TLB misses handled in hardware TLB misses handled in hardware

Characteristic Intel Pentium Pro PowerPC 604
Cache organization Split instruction and data caches Split intruction and data caches
Cache size 8 KB each for instructions/data 16 KB each for instructions/data
Cache associativity Four-way set associative Four-way set associative
Replacement Approximated LRU replacement LRU replacement
Block size 32 bytes 32 bytes
Write policy Write-back Write-back or write-through


