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◆ Fast Addition
◆ Division, Pentium style
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Conventional Adder Design

Shortcoming
◆ Must propagate carries across all cells
◆ Can improve with more costly hardware

FAFAFAFA

u3 u2 u1 u0

v3 v2 v1 v0

s3 s2 s1 s0s4

Structure Abstraction

Adder

U V

S

FA

Sum =
(u+v+w) mod 2

Carry =
(u+v+w) / 2

Full Adder Element
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Divide & Conquer?

◆ This is not an improvement

n -bit Adder cin

U[n-1…0]V[n-1…0]

cout

S[n-1…0]

n /2-bit Adder

U[n-1…n/2]V[n-1…n/2]

cout

S[n-1…n/2]

n /2-bit Adder cin

U[n/2-1…0]V[n/2-1…0]

S[n/2-1…0]
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Carry Function Reformulation

Carry Function
 u v cin cout
 0 0 0 0
 0 0 1 0
 0 1 0 0
 0 1 1 1
 1 0 0 0
 1 0 1 1
 1 1 0 1
 1 1 1 1

Alternate Formulation
 u v cout
 0 0 0 kill
 1 0 cin propagate
 0 1 cin propagate
1 1 1 generate

◆ When both local inputs 0, no carry
◆ When one is 0, the other is 1, propagate carry input
◆ When both are 1, then generate a carry
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Block Level Carry

◆ P indicates that carry propagates through block
◆ G indicates that block generates carry

Carry Prediction

cin

UV

P

G
C

cout

C Block
 P G cout
 0 0 0 kill
 1 0 cin propagate
 0 1 1 generate
1 1 – impossible
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Reformulated Adder Cell

u[i]v[i]

g[i]p[i]

local
pg

CSum

P[i]

G[i]
PG P[i-1]

G[i-1]

cin

c[i-1]

s[i]

Carry Prediction: PG
 p[i] g[i] P[i] G[i]
 0 0 0 0
 1 0 P[i-1] G[i-1]
 0 1 0 1

local pg
 u[i] v[i] p[i] g[i]
 0 0 0 0
0 1 1 0

 1 0 1 0
 1 1 0 1

Sum
p[i] c[i-1] s[i]
0 0 0

 0 1 1
 1 0 1
1 1 0

Xor

Half
Adder
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D & C Carry Prediction

◆ Divide & conquer yields shallow circuit

n-bit Prediction

U[n-1…0]V[n-1…0]

P

G

n /2-bit Predict

U[n-1…n/2]V[n-1…n/2]

PL

n /2-bit Predict

U[n/2-1…0]V[n/2-1…0]

GL

PR

GR

P

G

Carry Prediction: PG
 PL GL P G
 0 0 0 0
 1 0 PR GR
 0 1 0 1

PG
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Carry Prediction Tree

PG

PG

PG

PG

PG

PG

PG

PG

PG

PG

PG

pg[0]pg[1]pg[2]pg[3]pg[4]pg[5]pg[6]pg[7]

PG[0]PG[1]PG[2]PG[3]PG[4]PG[5]PG[6]PG[7]

PG
PR

P G
GR

PL GL

◆ O(n) complexity
◆ O(log n) depth

Generalization
◆ Parallel Prefix
◆ Any associative 

operation



CS 347 S’98– 9 –

Division, Pentium Style

Summary
◆ Pentium is Intel’s mainstream microprocessor

– 3.3 Million transistors
– More advanced PentiumPro fills high end niche

◆ Early versions all had error in floating point division hardware
– 5 missing transistors, fixed with change to single mask

◆ Disclosed largely via Internet
◆ Intel ultimately offered replacements to everyone

– $475 Million charge from 4Q94 revenue

Outline
◆ Brief chronology
◆ Technical details
◆ Overall impact



CS 347 S’98– 10 –

Discovery and Disclosure

Events
◆ Prof. Thomas Nicely, Lynchburg College, VA

– Looking at properties of “twin primes”
– Incorrect reciprocals for 824633702441 and 824633702443

» ~ Single precision accuracy (4 X 10–9)
– Contacted others on Oct. 30, ‘94

◆ Spreading of Information on Internet news group comp.sys.intel
– Terje Mathisen of Norway posts Nicely’s findings on Nov. 3
– Andreas Kaiser of Germany finds 23 bad reciprocals, Nov. 10

◆ Tim Coe, Vitesse Semiconductor, Nov. 16
– Created (good enough) software model of flawed divide algorithm
– Discovered (nonreciprocal) cases with errror up to 6 X 10–5

– Later showed 1738 cases with less than single precision accuracy
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Intel Plays Tough

◆ Claimed had discovered in Summer ‘94
– Logged as minor bug, to be fixed on next revision

◆ Andy Grove “posted” to Internet, Nov. 24
– Stating that other posters are overreacting

» All chips have flaws
– Different Intel employee actually did the post

◆ Agrees to replace, but only to those who can justify need
◆ Nov. 30: Report made available via WWW

– Describes algorithm and error
– Estimates average user will encounter once in 27,000 years
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The Uproar

IBM Breaks Ranks
◆ Produces report stating error may be encountered as much as once 

every 24 days, Dec. 12
– Nonuniform number distribution
– 4000X more divides per day than Intel estimates

◆ Stops shipment of all Pentium-based PCs
◆ Some question IBM’s motives

Internet
◆ Hundreds of posts daily to comp.sys.intel
◆ Arguments on both sides
◆ Angered about Intel’s attitude

Popular Press
◆ Starts following controversy in November
◆ Generally accepts Intel’s description as “obscure error”
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Resolution

Free Replacement Policy, Dec. 20
◆ No need to argue need
◆ Complex logistics

– Many different versions
– Actual replacement easy

Intel Not Humbled
◆ Still state that error is “technically an extremely minor problem”

Actual Replacement Rate Low
◆ 10% business users, 2% home users
◆ Must guarantee $500 with credit card

– Charged only if defective chip not sent back
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Numerical Basics

Floating Point Numbers
◆ Numerical Form: –1s m  2e

– Mantissa m  either 24, 53, or 64 bits

Given
◆ Dividend mantissa  p
◆ Divisor mantissa d

◆ Normalized forms:  1.xxxx2
– Range Constraint: 1 ≤ p, d < 2

Compute
◆ Quotient mantissa q

– To sufficient precsion
◆ Exponent

– Based on exponents of dividend & divisor
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Radix 4 Division

Conventional “Restoring” Algorithm
◆ Select quotient digit qi 

– 0, 1, 2, or 3
◆ Subtract  qi d   from p
◆ Shift p  left

Divisor d

X 1  1.301

X 2  3.202

X 3 11.103

Example

p0   1.2130 q1 0

– q1 d - 0.

  1.2130

p1  12.1300 q2 3

– q2 d -11.1030

    1.0210

p2  10.2100 q3 2

– q3 d - 3.2020

   1.0020

  10.0200

◆ Must consider all digits to 
select digit qi 

◆ Must form “awkward 
multiple” 3d
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Visualization of Digit Selection

Interpretation
◆ Horizontal axis indicates scaled partial remainder

– In range [0, 4)

◆ Vertical axis indicates result of subtracting quotient digit
– Unique choice of digit
– In range [0, 1)

pi+1 / 4 d

pi /  d

4
1

0 1 2 3

p0 p1p2
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SRT Division

History
◆ Radix 4 version due to Atkins (1968)
◆ Commonly used by others, first time for Intel

Goals
◆ Predict quotient digit based on incomplete information about partial 

remainder and divisor
◆ No awkward multiples

Key Ideas of Method
◆ Quotient Digits –2, –1, 0, +1, +2

– Redundancy allows imperfect digit prediction
– Power of two multiples

» Implement with shift and/or complement
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SRT Iteration Step

Given
◆ Partial Remainder  pi sxxx.xxxxxx … x2

– Two’s complement representation
– Can bound range –16/3  <   pi <  16/3

◆ Divisor d    1.xxxxxx … x2
– Range Constraint: –8/3 d  ≤   pi ≤  8/3 d

Select
◆ Quotient Digit qi+1

– By table lookup
– Using truncated values P and D

◆ Compute pi+1  =  4 [pi – qi+1 d ]

P

D
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SRT Divider Circuit

Registers
◆ Hold partial remainder

– Initially loaded with dividend
◆ Divisor (not shown)

– Unchanged for entire computation
◆ Quotient shift register

– Accumulates digits from iterations Extract
Digit

P

Partial Remainder

Dividend

Quotient
Shift Register

D

Correct
&

Round

Divisor

MUX

Q i+1
Quotient

Digit P i+1

P i

Q R

Uncorrected
Quotient

Uncorrected
Remainder

RuQu
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Quotient Digit Selection

Invariant Preserved
–8/3 d  ≤   pi+1 ≤  8/3 d

Examples

 pi qi+1 pi+1

A –7/15 d –1 4 [8/15] d = 32/15 d

B 4/3 d +1 4 [1/3] d = 4/3 d

C 4/3 d +2 4 [–2/3] d = –8/3 d

pi+1 / 4 d

pi /  d

8/3
2/3

–8/3
–2/3

A
B

C
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Carry Save Adders

◆ Rearrange elements to eliminate carry chain
◆ Three input words
◆ Two output words
◆ 3 to 2 reducer

Structure

FAFAFAFA

u3 u2 u1 u0

v3 v2 v1 v0

s3 s2 s1 s0

w3 w2 w1 w0

c3 c2 c1 c0

Abstraction

CSA

U W

S

V

C

S  + 2C  = U + V + W
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SRT Division Step

Elements
◆ Carry Save Adder to subtract 

weighted divisor
◆ 7-bit adder to get estimate of 

partial remainder
– High order bits

◆ Lookup table to determine 
quotient digit
– 4 “interesting” bits of divisor

» Leading bit always 1
– Implemented as PLA
– Where Intel made mistake

◆ Shift/complementer to weight 
divisor
– Multiply by quotient digit

Extract
Digit

AddLookup
Table

CSA
& Shift

*D

Q i+1 PS i + 1

PS i PC i

PC i + 1
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Lookup Table Design

Digit Selection
◆ Depends on ratio of d and p
◆ Redundancy leads to overlapping 

regions
– May choose either digit

–2 –1 0 +1 +2

pi+1 / 4 d

pi / d

8/3
2/3

–8/3 –5/3 –2/3 1/3 4/3

–4/3 –1/3 2/3 5/3

Not Reachable

Not Reachable

2/3

1/3

4/3

5/3

8/3

–2/3

–1/3

–4/3

–5/3

–8/3

+2

+1

0

–1

–2

p

d

1.0 2.0

1.0

2.0

3.0

–1.0

–2.0

–3.0
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Discretization of P & D

Values
◆ Least Resolvable Unit (LRU)

– Weight of least significant bit
◆ Partial Remainder  pi sxxx.xxxxxx …

– Approximate by P
– Potentially underestimates by two LRUs
– One each from pc and ps

◆ Divisor d    1.xxxxxx …
– Approximate by D
– Potentially underestimates by one LRU

Compensating for Inaccuracy
◆ Redundancy enables valid digit selection for all cases

– As long as have enough bits of pi and d

P

D
(P, D)

Range of Values for (pi, d)
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Valid PD Table Entries

Key
2

2 ,1

1

1 ,0

0

'0101.011
'0101.010
'0101.001
'0101.000
'0100.111 INTEL
'0100.110
'0100.101
'0100.100
'0100.011 INTEL
'0100.010
'0100.001
'0100.000
'0011.111 INTEL
'0011.110
'0011.101
'0011.100
'0011.011 INTEL
'0011.010
'0011.001
'0011.000
'0010.111 INTEL
'0010.110
'0010.101
'0010.100
'0010.011
'0010.010
'0010.001
'0010.000
'0001.111
'0001.110
'0001.101
'0001.100
'0001.011
'0001.010
'0001.001
'0001.000
'0000.111
'0000.110
'0000.101
'0000.100
'0000.011
'0000.010
'0000001
'0000.000
P 1.0000 1.0001 1.0010 1.0011 1.0100 1.0101 1.0110 1.0111 1.1000 1.1001 1.1010 1.1011 1.1100 1.1101 1.1110 1.1111 D

8/3

5/3

4/3

2/3

1/3
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Nuances in PD Table

Key
2

2 ,1

1

1 ,0

0

5/3

4/3

+2

+1

5/3

4/3

+2

+1

Unique value required.
Even though choice at (P,D) Either 2 or 1 OK

Require table entry
Even though (P,D)
out of range

No table entry required.
All values out of range

8/3

+2

8/3

+2
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Intel’s Table Errors

Actual Bug
◆ Erroneous entries for 5 cases
◆ Table generates 0 instead of +2

Occurs Only under Marginal Conditions
◆  (P, D)  appear to be out of range
◆   D  must under-estimate  d 

◆   P  must closely estimate pi

– Unlikely with carry-save format
(P, D)

Unreachable

Reachable

+2

1.0001 1.0100 1.0111 1.1010 1.1101
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Example of Error

◆ Once hit bad table entry, 
cannot recover

◆ Contrary to some 
statements in press
– Not “Self Correcting” !

Correct Behavior

p0  0100.111000 q1 +2

+ – q1 d  1100.010010

 0001.001010

p1  0100.101000

Divisor d

X  1  0001.110111

X  2  0011.101110

X -1  1110.001001

X -2  1100.010010

Incorrect Behavior

p0  0100.111000 q1 0

+ – q1 d  0000.000000

 0100.111000

p1  0011.100000

Leading digits drop off end
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When Can Error Occur?

Requires at Least 7 Iterations
◆ Hard to get to bad positions
◆ Worst case error 6 X 10–5

Only for “At Risk” Divisors
◆ Stay in single column for entire division
◆ Remaining part of divisor should have lots of 1’s

– To ensure that D underestimates d
◆ Coe’s Example

–  d = 314572710   1011111111111111111111

– Correct result: 1.33382044913624100
– Pentium’s result: 1.33373906890203759

◆ Nicely’s Example
– d = 82463370244110 101111111111111111111011100000101001

At Risk!
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How Serious is the Error?

Intel’s Claims
◆ Most applications don’t do much division

– 1000 per day
◆ Many applications can tolerate occasional errors

– E.g., image generation
◆ Maximum error fairly small

– Once every 1.5 X 109 divides
◆ Statistical likelihood remote

– Once every 27,000 years

IBM’s Counterclaims
◆ Even spreadsheet users do lots of divides

– Up to 4.2 Million per day
◆ Error more likely for numbers just below integer

– Up to once every 108 divides
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Other Concerns

Error is not Random
◆ Get same result every time on every Pentium

Numbers Used in Practice NOT Uniformly Distributed
◆ E.g., 4.999999 / 14.999999 

– gives 0.33332922 instead of 0.33333329
– Vaughan Pratt’s “bruised integers”

Error is Hard to Work Around
◆ Can shut off floating point

– Machine then runs slower than 486
◆ Can recompile with workaround divide subroutine

– But most users only have binaries

Bad Numerical Properties
◆ E.g, 4.999999 / 15.0 > 4.999999 / 14.999999

– Problem for iterative methods
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Who is Affected?

Average PC User
◆ Not likely

Heavy Users of Numerical Software
◆ Significant subset of Pentium customers
◆ Concern for numerical accuracy very high

– Single inaccurate result can be magnified by later steps
◆ Ethical/legal responsibilities

– Negligent to knowingly use flawed system
– Would you buy a bridge from a civil engineer who had used a Pentium?
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Why Didn’t Intel Discover it?

Standard Steps in Verifying Design
◆ Simulate many cases on high-level software model

– Probably had correct P-D table entries
◆ Simulate/emulate final logic design

– Hardware emulators costing $Millions
– Run complete chip model at ~ 100Hz

»  < 10–6 X real time
– Not clear which version of table was used

◆ Run tests on initial production chips
– Feasible to run billions of tests
– Should have caught error here

Observations
◆ Hard to test all aspects of such a complex system

– But this is a weak excuse
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What about Formal Verification?

Currently Used Tools
◆ Most based on Ordered Binary Decision Diagrams (OBDDs)

Other Alternatives
◆ Sequential verification by symbolic model checking

– Used on protocols and small sequential circuits
◆ Tools based on automatic theorem provers

– Unpopular with industry

What About Dividers?
◆ Some have been done with theorem prover, but messy
◆ BDD-based tools cannot handle complete algorithm

– But still could be used to verify single iteration
◆ New tools based on word-level representations show promise

– Binary Moment Diagrams
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Specifying Single Step

Algebraic Representation
◆ Define

Pi  =  PSi + PCi

Pi+1  =  PSi+1 + PCi+1

◆ Input Range Constraint
–8/3 D ≤ Pi ≤ 8/3 D

◆ I/O Relation
Pi+1  =  4 [Pi – Qi +1D]

◆ Output Range Constraint
–8/3 D ≤ Pi+1  ≤ 8/3 D

Bit-Level Verification
◆ BDDs represent Boolean functions
◆ Must give specification in terms of 

individual signal values

Extract
digitD

Qi+1PSi+1

PS i PCi 

PC i+1
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Bit-Level Verification of Single Step

◆ Create “checker circuit”
– Gate-level realization of 

spec.
– Larger, but simpler than 

actual circuit
– Independent check of 

design

Q i+1PS i+1PCi+1

D PS i PCi 
Range
Check
(1500)

I/O
Check
(1300)

Range
Check
(1500)

Extract
Digit

(1100)

OK

◆ Evaluate with OBDDs
– 112 MB, 10 min. CPU
– Would uncover Intel’s 

problem
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Bit-Level Analysis Summary

Shortcomings
◆ Must generate checker circuits
◆ No reliable way to verify checker circuits
◆ BDD blowup limits size/class of function

Benefits
◆ Tests complete functionality
◆ Designing checker circuits not so difficult

– More conservative design style
– Can have library of  functions

◆ Can use to synthesize or optimize design
◆ Low cost

– < $200,000 test of divider would have saved $475 million
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Long Term Trends

Microprocessor Complexity Increasing at Rapid Pace
◆ Pentium has features historically found in high-end mainframes

– Hardware support for multiplication, division, square root, and 
transcendental functions

– Sophisticated instruction pipeline
◆ Exercising all possible system behaviors especially difficult
◆ Future generations even more complex

– Speculative execution

Must Get it Right First Time
◆ Cannot send field service to replace boards
◆ Typically have more people working on verification than on design

Ubiquitous Systems of Unprecedented Complexity
◆ Industry’s headaches caused by own successes
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Impact on Intel

Short Term
◆ Embarassing to make mistake
◆ Bad PR due to poor crisis management
◆ $475 Million is a lot of money

– Still had very profitable year, including $372 Million for 4Q94

Long Term
◆ Intel still way ahead of competition

– Pentium class clones just coming out
– Intel already shipping next generation PentiumPro
– $15 Billion of $16 Billion x86 microprocessor market in 1996

◆ Everyone will be more careful in the future
– Good opportunities for research on formal verification

◆ Intel benefits even from this publicity
– as playing key role in computer industry
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Impact on Society

Reminded of Importance of Computing
◆ Have come to expect ever faster & cheaper machines
◆ Rely heavily on correctness of results

The Power of the Internet
◆ Created ad-hoc, international group of collaborators

– U.S., Germany, Norway, Canada
– University, industry
– No external control or authority

◆ Rapid dissemination of information and results
◆ Caught Intel by surprise

– Had never dealt with force of this kind
◆ System does not scale

– A  few gems among the drivel


