
Measurement & Performance

Todd C. Mowry
CS 347

Jan 15, 1998
Τopics:

• Timers
• Performance measures
• Relating performance measures

– system perfomance measures
– latency and throughput
– Amdahl’s law

CS 347 S’98 2

The Nature of Time

real (i.e. wall clock) time

= User Time: time spent executing instructions in the user
 process

Unless otherwise specified, “time” often refers to “user time”.

= System Time: time spent executing instructions in the
 kernel on behalf of the user process

+ = real (wall clock) time+

= all other time (either idle or else executing instructions
 unrelated to the user process)

CS 347 S’98 3

Anatomy of a Timer

A counter value (T) is updated upon discrete ticks
• a tick occurs once every ∆ time units

• upon a tick, the counter value is incremented by ∆ time units

Some Terminology:
• timer period = ∆ seconds / tick

• timer resolution = 1/∆ ticks / second

time

∆
tick

Ti Ti+1 Ti+k

Ti+1 = Ti + ∆

CS 347 S’98 4

Using Timers

Estimating elapsed time:
• based on discrete timer values before (Ts) and after (Tf) the event

How close is Tobserved to Tactual?

∆

time Ts Tf

Tactual

Tobserved = Tf - Ts

tb te

CS 347 S’98 5

Timer Error: Example #1

time
Ts Tf

Tobserved

Tactual

Tactual: ~ 2 ∆
Tobserved: ∆

Absolute measurement error: ~ ∆
Relative measurement error: ~ ∆/ 2∆ = ~ 50%

CS 347 S’98 6

Timer Error: Example #2

time
Ts Tf

Tactual

Tobserved

Tactual: ε (~ zero)

Tobserved: ∆
Absolute measurement error: ~ ∆
Relative measurement error: ~ ∆/ ε = ~ infinite

CS 347 S’98 7

Timer Error: Example #3

time
Ts =Tf

Tactual

Tactual: X
Tobserved: 0

Absolute measurement error: X
Relative measurement error: X / X = 100%

X

CS 347 S’98 8

Timer Error: Summary

Absolute measurement error: +/- ∆
Key point: need a large number of ticks to hide error

• can compute Tthreshold as a function of ∆ and E

• Tthreshold = minimum observed time to guarantee relative error bound

• E = maximum acceptable relative measurement error

∆

time Ts Tf

Tactual

Tobserved = Tf - Ts

tb te

CS 347 S’98 9

Homework 1 Timer Package

Unix interval countdown timer
• decrements timer value by ∆ every ∆ seconds

• setitimer(): initialize timer value
• getitimer(): sample timer value
• measures user time

“etime” package:
• based on Unix interval timers
• set_etime(): initializes timer
• get_etime(): returns elapsed time in seconds since last call to

set_etime()

CS 347 S’98 10

Performance expressed as a time

Absolute time measures
• difference between start and finish of an operation
• synonyms: running time, elapsed time, response time, latency,

completion time, execution time
• most straightforward performance measure

Relative (normalized) time measures
• running time normalized to some reference time
• (e.g. time/reference time)

Guiding principle: Choose performance measures that
track running time.

CS 347 S’98 11

Performance expressed as a rate

Rates are performance measures expressed in units of
work per unit time.

Examples:
• millions of instructions / sec (MIPS)
• millions of floating point instructions / sec (MFLOPS)
• millions of bytes / sec (MBytes/sec)
• millions of bits / sec (Mbits/sec)
• images / sec
• samples / sec
• transactions / sec (TPS)

CS 347 S’98 12

Performance expressed as a rate(cont)

Key idea: Report rates that track execution time.

Example: Suppose we are measuring a program that
convolves a stream of images from a video camera.

Bad performance measure: MFLOPS

• number of floating point operations depends on the particular
convolution algorithm: n^2 matix-vector product vs nlogn fast
Fourier transform. An FFT with a bad MFLOPS rate may run faster
than a matrix-vector product with a good MFLOPS rate.

Good performance measure: images/sec
• a program that runs faster will convolve more images per second.

CS 347 S’98 13

Performance expressed as a rate(cont)

Fallacy: Peak rates track running time.

Example: the i860 is advertised as having a peak rate of
80 MFLOPS (40 MHz with 2 flops per cycle).

However, the measured performance of some
compiled linear algebra kernels (icc -O2) tells a
different story:

Kernel 1d fft sasum saxpy sdot sgemm sgemv spvma
MFLOPS 8.5 3.2 6.1 10.3 6.2 15.0 8.1
%peak 11% 4% 7% 13% 8% 19% 10%

CS 347 S’98 14

Relating time to system measures

Suppose that for some program we have:
• T seconds running time (the ultimate performance measure)
• C clock ticks, I instructions, P seconds/tick (performance measures

of interest to the system designer)

T secs = C ticks x P secs/tick
 = (I inst/I inst) x C ticks x P secs/tick
T secs = I inst x (C ticks/I inst) x P secs/tick

running
time

instruction
count

avg clock
ticks per
instruction
(CPI)

clock period

CS 347 S’98 15

Pipeline latency and throughput

video processing system

(N input images)

In,...,I3, I2, I1

(N output images)

On,...,O3, O2, O1

Latency (L): time to process an individual image.

Throughput (R): images processed per unit time

One image can be processed by the system at any point in time

CS 347 S’98 16

Video system performance

L = 3 secs/image.

R = 1/L = 1/3 images/sec.

T = L + (N-1)1/R
 = 3N

time

1

Stage 1

2

3

4

5

6

7

1

1

1

2

2

2

3

1 out

2 out

CS 347 S’98 17

Pipelining the video system

stage 1
(buffer)

video pipeline

(L1,R1) (L3,R3)(L2,R2)

stage 3
(display)

stage 2
(CPU)

(N input images)

In,...,I3, I2, I1

(N output images)

On,...,O3, O2, O1

One image can be in each stage at any point in time.

Li = latency of stage i
Ri = throughput of stage i

L = L1 + L2 + L3

R = min(R1, R2, R3)

CS 347 S’98 18

Pipelined video system performance

time

1
Suppose:

L1 = L2 = L3 = 1

Then:

L = 3 secs/image.

R = 1 image/sec.

T = L + (N-1)1/R
 = N + 2

Stage 1 Stage 2 Stage 3

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

1

2

3

4

5

1 out

2 out

3 out

4 out

CS 347 S’98 19

Relating time to latency and thruput

In general:
• T = L + (N-1)/R

The impact of latency and throughput on running time
depends on N:
• (N = 1) => (T = L)
• (N >> 1) => (T = N-1/R)

To maximize throughput, we should try to maximize the
minimum throughput over all stages (i.e., we strive for
all stages to have equal throughput).

CS 347 S’98 20

Amdahl’s law

You plan to visit a friend in Normandy France and must
decide whether it is worth it to take the Concorde SST
($3,100) or a 747 ($1,021) from NY to Paris, assuming
it will take 4 hours Pgh to NY and 4 hours Paris to
Normandy.

 time NY->Paris total trip time speedup over 747

747 8.5 hours 16.5 hours 1
SST 3.75 hours 11.75 hours 1.4

Taking the SST (which is 2.2 times faster) speeds up
the overall trip by only a factor of 1.4!

CS 347 S’98 21

Amdahl’s law (cont)

T1 T2

Old program (unenhanced)
T1 = time that can NOT
 be enhanced.

T2 = time that can be
 enhanced.

T2’ = time after the
 enhancement.

Old time: T = T1 + T2

T1’ = T1 T2’ <= T2

New program (enhanced)

New time: T’ = T1’ + T2’

Speedup: Soverall = T / T’

CS 347 S’98 22

Amdahl’s law (cont)

Two key parameters:
Fenhanced = T2 / T (fraction of original time that can be improved)
Senhanced = T2 / T2’ (speedup of enhanced part)

T’ = T1’ + T2’ = T1 + T2’ = T(1-Fenhanced) + T2’
 = T(1-Fenhanced) + (T2/Senhanced) [by def of Senhanced]
 = T(1-Fenhanced) + T(Fenhanced /Senhanced) [by def of Fenhanced]
 = T((1-Fenhanced) + Fenhanced/Senhanced)

Amdahl’s Law:
 Soverall = T / T’ = 1/((1-Fenhanced) + Fenhanced/Senhanced)

Key idea: Amdahl’s law quantifies the general notion
of diminishing returns. It applies to any activity, not
just computer programs.

CS 347 S’98 23

Amdahl’s law (cont)

Trip example: Suppose that for the New York to Paris
leg, we now consider the possibility of taking a
rocket ship (15 minutes) or a handy rip in the fabric
of space-time (0 minutes):

time NY->Paris total trip time speedup over 747
747 8.5 hours 16.5 hours 1
SST 3.75 hours 11.75 hours 1.4
rocket 0.25 hours 8.25 hours 2.0
rip 0.0 hours 8 hours 2.1

CS 347 S’98 24

Amdahl’s law (cont)

Useful corollary to Amdahl’s law:
• 1 <= Soverall <= 1 / (1 - Fenhanced)

Fenhanced Max Soverall Fenhanced Max Soverall

0.0 1 0.9375 16

0.5 2 0.96875 32

0.75 4 0.984375 64

0.875 8 0.9921875 128

Moral: It is hard to speed up a program.

Moral++ : It is easy to make premature optimizations.

