Measurement \& Performance

Todd C. Mowry CS 347

Jan 15, 1998

Topics:

- Timers
- Performance measures
- Relating performance measures
-system perfomance measures
- latency and throughput
- Amdahl's law

The Nature of Time

$=$ System Time: time spent executing instructions in the kernel on behalf of the user process

Unless otherwise specified, "time" often refers to "user time".

Anatomy of a Timer

A counter value (T) is updated upon discrete ticks

- a tick occurs once every Δ time units
- upon a tick, the counter value is incremented by Δ time units Some Terminology:
- timer period $=\Delta$ seconds $/$ tick
- timer resolution = $1 / \Delta$ ticks $/$ second

Using Timers

Estimating elapsed time:

- based on discrete timer values before $\left(\mathrm{T}_{\mathrm{s}}\right)$ and after $\left(\mathrm{T}_{\mathrm{f}}\right)$ the event

How close is $T_{\text {observed }}$ to $T_{\text {actual }}$?

Timer Error: Example \#1

$$
\begin{aligned}
& \mathrm{T}_{\text {actual }}: \sim 2 \Delta \\
& \mathrm{~T}_{\text {observed }}: \Delta
\end{aligned}
$$

Absolute measurement error: ~ Δ
Relative measurement error: $\sim \Delta / 2 \Delta=\sim 50 \%$

Timer Error: Example \#2

$$
\begin{aligned}
& \mathrm{T}_{\text {actual }}: \varepsilon(\sim \text { zero }) \\
& \mathrm{T}_{\text {observed }}: \Delta
\end{aligned}
$$

Absolute measurement error: ~ Δ
Relative measurement error: $\sim \Delta / \varepsilon=\sim$ infinite

Timer Error: Example \#3

$T_{\text {actual }}: X$
$T_{\text {observed }}: 0$

Absolute measurement error: \mathbf{X}
Relative measurement error: X / $X=100 \%$

Timer Error: Summary

Absolute measurement error: +/- Δ
Key point: need a large number of ticks to hide error

- can compute $\mathrm{T}_{\text {threshold }}$ as a function of Δ and E
- $\mathrm{T}_{\text {threshold }}=$ minimum observed time to guarantee relative error bound
- E = maximum acceptable relative measurement error

Homework 1 Timer Package

Unix interval countdown timer

- decrements timer value by Δ every Δ seconds
- setitimer(): initialize timer value
- getitimer(): sample timer value
- measures user time
"etime" package:
- based on Unix interval timers
- set_etime(): initializes timer
- get_etime(): returns elapsed time in seconds since last call to set_etime()

Performance expressed as a time

Absolute time measures

- difference between start and finish of an operation
- synonyms: running time, elapsed time, response time, latency, completion time, execution time
- most straightforward performance measure

Relative (normalized) time measures

- running time normalized to some reference time
- (e.g. time/reference time)

Guiding principle: Choose performance measures that track running time.

Performance expressed as a rate

Rates are performance measures expressed in units of work per unit time.

Examples:

- millions of instructions / sec (MIPS)
- millions of floating point instructions / sec (MFLOPS)
- millions of bytes / sec (MBytes/sec)
- millions of bits / sec (Mbits/sec)
- images / sec
- samples / sec
- transactions / sec (TPS)

Performance expressed as a rate(cont)

Key idea: Report rates that track execution time.

Example: Suppose we are measuring a program that convolves a stream of images from a video camera.

Bad performance measure: MFLOPS

- number of floating point operations depends on the particular convolution algorithm: n^2 matix-vector product vs nlogn fast Fourier transform. An FFT with a bad MFLOPS rate may run faster than a matrix-vector product with a good MFLOPS rate.

Good performance measure: images/sec

- a program that runs faster will convolve more images per second.

Performance expressed as a rate(cont)

Fallacy: Peak rates track running time.
Example: the i860 is advertised as having a peak rate of 80 MFLOPS (40 MHz with 2 flops per cycle).

However, the measured performance of some compiled linear algebra kernels (icc -O2) tells a different story:

Kernel	1d fft	sasum	saxpy	sdot	sgemm	sgemv	spvma
MFLOPS	8.5	3.2	6.1	10.3	6.2	15.0	8.1
\%peak	11%	4%	7%	13%	8%	19%	10%

Relating time to system measures

Suppose that for some program we have:

- T seconds running time (the ultimate performance measure)
- C clock ticks, I instructions, P seconds/tick (performance measures of interest to the system designer)

T secs = C ticks $x P$ secs/tick
$=(I$ inst/l inst) $\times C$ ticks $\times P$ secs/tick
T secs = I inst \times (C ticks/l inst) $x P$ secs/tick

Pipeline latency and throughput

Latency (L): time to process an individual image.
Throughput (R): images processed per unit time
One image can be processed by the system at any point in time

Video system performance

$L=3$ secs/image.
$R=1 / L=1 / 3$ images/sec.
$T=L+(N-1) 1 / R$
$=3 N$

Pipelining the video system

One image can be in each stage at any point in time.
$L_{i}=$ latency of stage i
$\mathbf{R}_{\mathrm{i}}=$ throughput of stage i
$L=L_{1}+L_{2}+L_{3}$
$R=\min \left(R_{1}, R_{2}, R_{3}\right)$

Pipelined video system performance

Suppose:
$L_{1}=L_{2}=L_{3}=1$
Then:
$L=3$ secs/image.
$R=1$ image/sec.
$T=L+(N-1) 1 / R$
$=N+2$

Stage 1 Stage 2 Stage 3

Relating time to latency and thruput

In general:

- $T=L+(N-1) / R$

The impact of latency and throughput on running time depends on N :

- $(N=1)=>(T=L)$
- $(N \gg 1)=>(T=N-1 / R)$

To maximize throughput, we should try to maximize the minimum throughput over all stages (i.e., we strive for all stages to have equal throughput).

Amdahl's law

You plan to visit a friend in Normandy France and must decide whether it is worth it to take the Concorde SST $(\$ 3,100)$ or a $747(\$ 1,021)$ from NY to Paris, assuming it will take 4 hours Pgh to NY and 4 hours Paris to Normandy.

	time NY->Paris	total trip time	speedup over 747
747	8.5 hours	16.5 hours	1
SST	3.75 hours	11.75 hours	1.4

Taking the SST (which is 2.2 times faster) speeds up the overall trip by only a factor of 1.4 !

Amdahl's law (cont)

Old program (unenhanced)

T_{1}	$\mathrm{~T}_{2}$

Old time: $\mathrm{T}=\mathrm{T}_{1}+\mathrm{T}_{2}$

New program (enhanced)

$$
\begin{array}{l|l}
\hline \mathrm{T}_{1}{ }^{\prime}=\mathrm{T}_{1} & \mathrm{~T}_{2}{ }^{\prime}<=\mathrm{T}_{2} \\
\hline
\end{array}
$$

New time: $\mathrm{T}^{\prime}=\mathrm{T}_{1}{ }^{\prime}+\mathrm{T}_{2}{ }^{\prime}$

Speedup: $\mathrm{S}_{\text {overall }}=\mathbf{T} / \mathrm{T}^{\prime}$
$\mathrm{T}_{1}=$ time that can NOT be enhanced.
$T_{2}=$ time that can be enhanced.
$\mathrm{T}_{2}{ }^{\prime}=$ time after the enhancement.

Amdahl's law (cont)

Two key parameters:

$$
\begin{array}{ll}
F_{\text {enhanced }}=T_{2} / T & \text { (fraction of original time that can be improved) } \\
S_{\text {enhanced }}=T_{2} / T_{2}^{\prime} & \text { (speedup of enhanced part) } \\
\left.\begin{array}{rl}
T^{\prime} & =T_{1}^{\prime}+T_{2}^{\prime}=T_{1}+T_{2}^{\prime}=T\left(1-F_{\text {enhanced }}\right)+T_{2}^{\prime} \\
& =T\left(1-F_{\text {enhanced }}\right)+\left(T_{2} / S_{\text {enhanced }}\right) \\
& =T\left(1-F_{\text {enhanced }}\right)+T\left(F_{\text {enhanced }} / S_{\text {enhanced }}\right) \\
& =T\left(\left(1-F_{\text {enhanced }}\right)+F_{\text {enhanced }} / S_{\text {enhanced }}\right)
\end{array} \quad \text { [by def of } S_{\text {enhanced }}\right]
\end{array}
$$

Amdahl's Law:

$$
S_{\text {overall }}=T / T^{\prime}=1 /\left(\left(1-F_{\text {enhanced }}\right)+F_{\text {enhanced }} / S_{\text {enhanced }}\right)
$$

Key idea: Amdahl's law quantifies the general notion of diminishing returns. It applies to any activity, not just computer programs.

Amdahl's law (cont)

Trip example: Suppose that for the New York to Paris leg, we now consider the possibility of taking a rocket ship (15 minutes) or a handy rip in the fabric of space-time (0 minutes):

	time NY->Paris	total trip time	speedup over 747
747	8.5 hours	16.5 hours	1
SST	3.75 hours	11.75 hours	1.4
rocket	0.25 hours	8.25 hours	2.0
rip	0.0 hours	8 hours	2.1

Amdahl's law (cont)

Useful corollary to Amdahl's law:

- $1<=S_{\text {overall }}<=1 /\left(1-F_{\text {enhanced }}\right)$

$F_{\text {enhanced }}$	Max $S_{\text {overall }}$	$F_{\text {enhanced }}$	Max $S_{\text {overall }}$
0.0	1	0.9375	16
0.5	2	0.96875	32
0.75	4	0.984375	64
0.875	8	0.9921875	128

Moral: It is hard to speed up a program.
Moral++ : It is easy to make premature optimizations.

