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The Nature of Time

real (i.e. wall clock) time

=  User Time: time spent executing instructions in the user
                       process

Unless otherwise specified, “time” often refers to “user time”.

=  System Time: time spent executing instructions in the
                            kernel on behalf of the user process

+ =  real (wall clock) time+

=  all other time (either idle or else executing instructions
                            unrelated to the user process)
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Anatomy of a Timer

A counter value (T) is updated upon discrete ticks 
• a tick occurs once every ∆ time units

• upon a tick, the counter value is incremented by ∆ time units

Some Terminology:
• timer period = ∆ seconds / tick

• timer resolution = 1/∆ ticks / second

time

∆
tick

Ti Ti+1 Ti+k

Ti+1 = Ti + ∆
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Using Timers

Estimating elapsed time:
• based on discrete timer values before (Ts) and after (Tf) the event

How close is  Tobserved to  Tactual?

∆

time Ts Tf

Tactual

Tobserved = Tf - Ts

tb te
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Timer Error: Example #1

time
Ts Tf

Tobserved

Tactual

Tactual: ~ 2 ∆
Tobserved: ∆

Absolute measurement error: ~ ∆
Relative measurement error: ~ ∆/ 2∆ = ~ 50%
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Timer Error: Example #2

time
Ts Tf

Tactual 

Tobserved

Tactual: ε (~ zero)

Tobserved: ∆
Absolute measurement error: ~ ∆
Relative measurement error: ~ ∆/ ε = ~ infinite
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Timer Error: Example #3

time
Ts =Tf

Tactual 

Tactual: X
Tobserved: 0

Absolute measurement error: X
Relative measurement error: X / X = 100%

X
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Timer Error: Summary

Absolute measurement error: +/- ∆
Key point: need a large number of ticks to hide error

• can compute Tthreshold as a function of ∆ and E

• Tthreshold = minimum observed time to guarantee relative error bound

• E = maximum acceptable relative measurement error

∆

time Ts Tf

Tactual

Tobserved = Tf - Ts

tb te
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Homework 1 Timer Package

Unix interval countdown timer
• decrements timer value by ∆ every ∆ seconds

• setitimer(): initialize timer value
• getitimer(): sample timer value
• measures user time

“etime” package:
• based on Unix interval timers
• set_etime(): initializes timer
• get_etime(): returns elapsed time in seconds since last call to 

set_etime()
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Performance expressed as a time

Absolute time measures
• difference between start and finish of an operation
• synonyms: running time, elapsed time, response time, latency, 

completion time, execution time
• most straightforward performance measure

Relative (normalized) time measures
• running time normalized to some reference time 
• (e.g. time/reference time)

Guiding principle: Choose performance measures that 
track running time.
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Performance expressed as a rate

Rates are performance measures expressed in units of 
work per unit time.

Examples:
• millions of instructions / sec (MIPS)
• millions of floating point instructions / sec (MFLOPS)
• millions of bytes / sec (MBytes/sec)
• millions of bits / sec (Mbits/sec)
• images / sec
• samples / sec
• transactions / sec (TPS)
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Performance expressed as a rate(cont)

Key idea: Report rates that track execution time.

Example: Suppose we are measuring a program that 
convolves a stream of images from a video camera.

  
Bad performance measure: MFLOPS

• number of floating point operations depends on the particular 
convolution algorithm: n^2 matix-vector product vs nlogn fast 
Fourier transform. An FFT with a bad MFLOPS rate may run faster 
than a matrix-vector product with a good MFLOPS rate.

Good performance measure: images/sec
• a program that runs faster will convolve more images per second.
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Performance expressed as a rate(cont)

Fallacy: Peak rates track running time.

Example: the i860 is advertised as having a peak rate of 
80 MFLOPS (40 MHz with 2 flops per cycle). 

However,  the measured performance of some 
compiled linear algebra kernels (icc -O2) tells a 
different story:

Kernel 1d fft sasum saxpy sdot sgemm sgemv spvma
MFLOPS 8.5 3.2 6.1 10.3 6.2 15.0 8.1
%peak 11% 4% 7% 13% 8% 19% 10%



CS 347 S’98 14 

Relating time to system measures

Suppose that for some program we have: 
• T seconds running time (the ultimate performance measure)
• C clock ticks, I instructions, P seconds/tick (performance measures 

of interest to the system designer)

T secs = C ticks x P secs/tick
            =  (I inst/I inst) x C ticks x P secs/tick
T secs = I inst x (C ticks/I inst) x P secs/tick

running
time

instruction
count

avg clock
ticks per
instruction
(CPI)

clock period
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Pipeline latency and throughput

video processing system

(N input images)

In,...,I3, I2, I1

(N output images)

On,...,O3, O2, O1

Latency (L): time to process an individual image.

Throughput (R): images processed per unit time

One image can be processed by the system at any point in time
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Video system performance

L = 3 secs/image.

R = 1/L = 1/3 images/sec.

T = L + (N-1)1/R
   = 3N

time

1

Stage 1

2

3

4

5

6

7

1

1

1

2

2

2

3

1 out

2 out
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Pipelining the video system

stage 1
(buffer)

video pipeline

(L1,R1) (L3,R3)(L2,R2)

stage 3
(display)

stage 2
(CPU)

(N input images)

In,...,I3, I2, I1

(N output images)

On,...,O3, O2, O1

One image can be in each stage at any point in time. 

Li = latency of stage i
Ri = throughput of stage i

L = L1 + L2 + L3

R = min(R1, R2, R3)



CS 347 S’98 18 

Pipelined video system performance

time

1
Suppose:
 
L1 = L2 = L3 = 1

Then:

L = 3 secs/image.

R = 1 image/sec.

T = L + (N-1)1/R
   = N + 2

Stage 1   Stage 2   Stage 3

2

3

4

5
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7

1

2

3

4
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6

7
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2

3

4

5

6

1

2

3

4

5

1 out

2 out

3 out

4 out
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Relating time to latency and thruput

In general:
• T = L + (N-1)/R

The impact of latency and throughput on running time 
depends on N:
• (N  = 1) => (T = L)
• (N  >> 1) => (T = N-1/R)

To maximize throughput, we should try to maximize the 
minimum throughput over all stages (i.e., we strive for 
all stages to have equal throughput).
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Amdahl’s law

You plan to visit a friend in Normandy France and must 
decide whether it is worth it to take the Concorde SST 
($3,100) or a 747 ($1,021) from NY to Paris, assuming 
it will take 4 hours Pgh to NY and 4 hours Paris to 
Normandy.

 
 time NY->Paris total trip time speedup over 747

747 8.5 hours 16.5 hours 1
SST 3.75 hours 11.75 hours 1.4

Taking the SST (which is 2.2 times faster) speeds up 
the overall trip by only a factor of 1.4!
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Amdahl’s law (cont)

T1 T2

Old program (unenhanced)
T1 = time that can NOT
     be enhanced.

T2 = time that can be
     enhanced.

T2’ = time after the
      enhancement.       

Old time: T = T1 + T2

T1’ = T1 T2’ <= T2

New program (enhanced)

New time: T’ = T1’ + T2’

Speedup: Soverall = T / T’
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Amdahl’s law (cont)

Two key parameters: 
Fenhanced = T2 / T      (fraction of original time that can be improved)
Senhanced = T2 / T2’   (speedup of enhanced part)

T’ = T1’ + T2’ = T1 + T2’ = T(1-Fenhanced) + T2’
    = T(1-Fenhanced) + (T2/Senhanced)                       [by def of Senhanced]
    = T(1-Fenhanced) + T(Fenhanced /Senhanced)          [by def of Fenhanced]
    = T((1-Fenhanced) + Fenhanced/Senhanced)

Amdahl’s Law:
    Soverall = T / T’ = 1/((1-Fenhanced) + Fenhanced/Senhanced)   

Key idea: Amdahl’s law quantifies the general notion 
of diminishing returns. It applies to any activity, not 
just computer programs.
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Amdahl’s law (cont)

Trip example: Suppose that for the New York to Paris 
leg,  we now consider the possibility of taking a 
rocket ship (15 minutes)  or a handy rip in the fabric 
of space-time (0 minutes):

time NY->Paris total trip time speedup over 747
747 8.5 hours 16.5 hours 1
SST 3.75 hours 11.75 hours 1.4
rocket 0.25 hours 8.25 hours 2.0
rip 0.0 hours 8 hours 2.1
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Amdahl’s law (cont)

Useful corollary to Amdahl’s law:
• 1  <=  Soverall    <= 1 / (1 - Fenhanced)

Fenhanced Max Soverall Fenhanced Max Soverall

0.0 1 0.9375 16

0.5 2 0.96875 32

0.75 4 0.984375 64

0.875 8 0.9921875 128

Moral: It is hard to speed up a program.

Moral++ : It is easy to make premature optimizations.


