d

Great Theoretical Ideas In Computer Science

Steven Rudich CS 15-251 Spring 2005

Lecture 29

Apr 28, 2005 Carnegie Mellon University

Ancient Paradoxes With An
mpossible Resolution.

~

Each Java program

% has a unique and

determined outcome
[not halting, or
outputting something].

/

Unless otherwise
% stated, we will be

considering programs

that take no input.

<

% Each Java program
has an unambiguous

meaning.

/

% Java is a prefix free

~

language. That is, no
Java program is the

prefix of any other.

Binary Java is Prefix-Free

We will represent Java in
binary (using ASCII codes for
each character). We will allow
only java programs where all
the classes are put in one big
class delimited by { }.

PREFIX FREE

MEANS THAT THE
%& NOTION OF A
RANDOM JAVA

PROGRAM IS WELL

DEFINED.

Flip a fair coin to \

create a sequence of

random bits. Stop, If

the bits form a Java
program P.

Each program gets
picked with probability

1,length of program P /

%% Javais an

unambiguous,
prefix-free language.

/

<

Define Q to be the
probability that a
random program

halts.

/

<

Q Is the probability
that a random coin

] sequence will
{¢> describe the text of a

halting program.

Z 2—Iength of p

halting programs p

Gottfried Wilhelm von Leibniz

There is almost
no paradox
without utility

BERRY PARADOX:

% “The smallest
natural number that
can't be named in
less than fourteen

words.”
%

=

List all English sentences
of 13 words or less. For
each one, if it names a

% number, cross that

number off a list of
natural numbers.

Smallest number left is
number named by the

Berry Sentence? J

As you loop through
sentences, you will
% meet the Berry
sentence. This
procedure will not
have a well defined

outcome. J

Worse: \

In English, there is
% not always a fact of
the matter about
whether or not a
given sentence
names a number.J

“This sentence

% refers to the number
7, unless the
number named by
this sentence is 7.”

/

BERRY PARADOX: Java is a language
where each program

“The smallest either produces
%% natural number that %% nothing or outputs a
can't be named in unique string. What

happens when we
less than fourteen express the Berry

words.” J paradox in Java? /

Theorem: If S is prefix-free and
contains no strings longer than n,
then S contains at most 2" strings.

Counting

A set of binary stings is "prefix-free"
if no string in the set is a prefix of For each string x in S, let f(x)
another string in the set be the string x with n-|X| O's
appended to its right. Thus, f is
a 1-1 map from S into {0,1}".

Order the Poker hands

Storing Poker Hands lexi X
exicographically

I want to store a 5 card poker hand To store a hand all T need is to store
using the smallest number of bits its index of size [log(2,598,960) =22
(space efficient). The ndive scheme bits.

would use 2 bits for a suit, 4 bits for a
rank, and hence 6 bits per card and 30
bits per hand. How can I do better? Let's call this the

“indexing trick”.

22 Bits Is OPTIMAL
221« 2,598,560

There are more poker hands than there
are 21 bit strings. Hence, you can't have
a string for each hand.

Incompressibility

We call a binary string x incompressible
if the shortest Binary Java program to
output x is at least as long as x.

Th: Half the strings of any given
length are incompressible

Java is prefix-free so there are at
most 2! programs of length n-1 or
shorter.

There are 2" strings of length n, and
hence at least half of them have no
smaller length program that outputs
them.

A compressible string
0101010101010101... a million times .01

public class Counter

{

public static void main(String argv(])

{
for (int i=0; i<1000000; i++)
System.out.print("01");
}

It is possible to define randomness
in ferms of incompressibility

Chaitin

Kolmogorov

-
Chaitin
S Kolmogorov

An incompressible string has no
computable, atypical properties!

Chaitin

J . Kolmogorov

An incompressible string has no
computable pattern!

If astring x is incompressible,
then there is nothing atypical that
you can say about it.

Suppose D is some atypical, computable
predicate that is true of x. Since D is
atypical, it is not true of many n bit
strings. So compress x by referring to
X by its index i in the enumeration of
strings of length n that have property
D. [Notice the use of the “indexing
trick"

When we notice a
%% “pattern”, we
always mean
something
atypical.

/

=

So when you see a
“pattern” in a
%% sufficiently long string
it allows you to
compress it. Hence,
incompressible strings

have no pattern.

For example, we can\
compress a sufficiently
long Binary string with:

%& *60% 1’s

1 always following 1101
*ASCII Of English Language

Text

BERRY PARADOX:

%% “The smallest

natural number that

can’t be named in

less than fourteen
words.”

Java Berry

The shortest
incompressible string
that is longer than
this Java program

Java Berry

The shortest
incompressible string
that this program can
certify is longer than
this program

Define an Incompressibility
Detector to be a program P such
that:

P(x) = “yes" means x is definitely
incompressible

P(x) = "not sure"”, otherwise

Let INCOMPRESSIBLE be a JAVA
incompressibility detector whose
program length is n.

INCOMPRESSIBLE(x) = "yes" means x
is definitely incompressible

INCOMPRESSIBLE(x) = "not sure”,
otherwise

JAVA BERRY
{

k:= bound on length of my program text
Loop x = strings of length k+1 to infinity
{ If INCOMPRESSIBLE(X) Output X}

Text of subroutine for INCOMPRESSIBLE.
}

The shortest incompressible string
that this program can certify is
longer than this program

If JAVA BERRY
.51 outputs ANYTHING
a real paradox would
result!

JAVA BERRY
{
S = Text of subroutine for INCOMPRESSIBLE
ki= STRING_LENGTH(S)
Loop x = strings of length k+b to infinity
{ If EXECUTE(S, X) = "YES" Output X}

Routine for EXECUTE (S,X) which executes the Java program
is the string S on input X

I;oufing for STRING_LENGTH(S) returns the length of string
}
BERRY has text length b + n

Note: b is a constant, independent of n

JAVA BERRY OUTPUTS NOTHING.

Theorem: There is a constant b such
that no INCOMPRESSIBLE detector of
length n outputs “yes” on any string of
length greater than n+b.

Proof: If so, we could use it inside Java
Berry and obtain a contradiction.

Let N be a sound, formal system that can be
presented as a n-bit program enumerating
consequences of its axioms.

No statement of the form
"X is incompressible”
for X of length > n+b
is a consequence of IM.

You fix any n-bit
/ foundation for \
%% mathematics. Now
consider that half of the
strings of length m>n+b
are incompressible. Your
foundation can’t prove that

any one of them is
\ incompressible. /

-)

Random Unknowable
Truths.

N _

<

Define Q to be the
probability that a
random program

halts.

/

Q — Z 2—Iength of p

halting programs p

-)

Q is a maximally

unknowable
number
e /

a)

%% Q is the optimally
compressed form

of the halting
oracle.

N _

/Let Q,, be the first n-\
%% bits of Q. By the
properties of binary

representation:

\ Q-Q,<¥" /

The first n bits of Q give enough
information to solve the halting
problem for any program with
length bounded by n.

Let Q, be the first n bits of Q.Let P bea
program of length n, of weight 2,

Start with a balance with Q, on the left side
and nothing on the other:

Q

n

\ Notice that Q, + $"is greater than Q

The first n bits of Q give enough
information to solve the halting
problem for any program with
length bounded by n.

Now start time sharing to run every program

except P for an infinite number of steps

each. If a program M halts, put weight 3IMI
on the right side:

[zIM...]

Converging to Q or to Q - (1/2)"

The first n bits of Q give enough
information to solve the halting
problem for any program with
length bounded by n.

If P halts, then W< Q - $7<Q, Hence, the
balance will never tip.

If P does not halt, W converges to Q, and
hence the balance must tip.

W= 3n [3IM.]

The first n bits of Q give enough
information to solve the halting
problem for any program with
length bounded by n.

L:=0
Timeshare each program M, except P
XVhen a program of length a halts, add 2-¢ to

When the first n bits of L equals the first n-

bits of Q, any length <= n program that is
going to halt will have halted.

Busy Beaver Function

BusyBeaver(n) = max running time of
any halting program of length n.

In BusyBeaver(n) we can unpack the
first n bits of information encoded in
Omega.

From n-bits of Q we can find all
incompressible strings of length
n+1

Determine all the programs of length n
that halt. Run them and cross off any
(n+1)-bit strings they output. The
strings that are left are
incompressible.

n bits of axioms can only help you
know n + b bits of Q

Or else you could prove
that strings longer than your
axiom system were
incompressible

Q Is not compressible by
more than b.

Suppose you could compress n bits of

Q by more b to get a string X.
Decompress X and use it to find an
incompressible strings of length n+1 and
output it. This method has the length
of X plus b which is still less than n+1.
Contradiction.

10

Busy Beaver Function

BusyBeaver(n) = max running time of
any halting program of length n.

In BusyBeaver(n) we can unpack the
first n bits of information encoded in
Omega.

Busy Beaver Function

BusyBeaver(n) = max running time of
any halting program of length n.

What is the growth rate of
BusyBeaver?

Grows faster than any computable
function!

Suppose a computable f(n) >
BusyBeaver(n)

BusyBeaver(n) = max running time of
any halting program of length n.

Run all n-bit programs for f(n) time.

The ones that have not halted will
never halt.

Reason is our most
powerful tool, but
some truths of the

mathematical world
have no pattern, or

representation that
can be reasoned

about. /

We can make a \

Diophantine
polynomial U in 16
variables such that
when X; is fixed to k,
the resulting
polynomial has a root
iff the kth bit of

Omega is 1. /

CIRCUIT-SATISFIABILITY

Given a circuit with n-inputs and one
output, is there a way to assign 0-1
values to the input wires so that the

output value is 1 (true)? 11 0
D

|

Yes, this circuit is satisfiable.
It has satisfying assignment
110.

11

CIRCUIT-SATISFIABILITY

Given: A circuit with n-inputs
and one output, is there a way
to assign 0-1 values to the input
wires so that the output value
is 1 (true)?

BRUTE FORCE: Try out all 2" assignments

3-colorability

Circuit Satisfiability

A Graph Named "Gadget”

Output

—H|H4|m| M| X

—H|m| 4|7«

||

12

Output

X | Y | OR
F I F | F
F | 77
T F | T
T T T

NOT gate

o <
—

13

<
——

pd

(e}

3
x

N
<

-a

How do we force the
graph to be 3 colorable
exactly when the circuit
is satifiable?

i

z
|

TRUE

Satisfiability of this
circuit =
3-colorability of this
graph

You can quickly tfransform a
method to decide 3-coloring into a
method to decide circuit
satifiability!

14

