Great Theoretical Ideas In Computer Science
Steven Rudich CS 15-251 Spring 2005
Lecture 29 Apr 28, 2005 Carnegie Mellon University

Ancient Paradoxes With An
Impossible Resolution.

S

Each Java program
has a unique and

determined outcome

[not halting, or

outputting something].

_

_/

S

Unless otherwise
stated, we will be

considering programs

_

that take no input.

_/

S

Each Java program

has an unambiguous
meaning.

_ _/

S

Java Is a prefix free
language. That is, no

Java program is the
prefix of any other.

_ _/

Binary Java is Prefix-Free

We will represent Java in
binary (using ASCITI codes for
each character). We will allow

only java programs where all
the classes are put in one big
class delimited by { }.

S

PREFIX FREE

MEANS THAT THE
NOTION OF A

RANDOM JAVA

PROGRAM IS WELL

_

DEFINED.

_/

Flip a fair coin to \

create a sequence of

random bits. Stop, If

the bits form a Java
program P.

Each program gets
picked with probability

\\ 1slength of program P /

S

Java Is an
unambiguous,

prefix-free language.

_

_/

-

Define Q to be the
probabillity that a
random program

halts.

_/

4 R

Q |Is the probabillity
that a random coin

sequence will
describe the text of a

halting program.

_/

2

halting programs p

2—Iength of p

N
-
e
\Y,
-
-
o
>
£
Q
=
O
3
-
Y-
+—
+—
o
b

Ity

There is almost

ho paradox
without ut

~

BERRY PARADOX:

“The smallest
natural number that
can’'t be named In
less than fourteen
words.”

_ /

List all English sentences

~

of 13 words or less. For
each one, If it names a

Sir

Nnu

number, cross that
number off a list of

natural numbers.
allest number left Is

mber named by the

\ Berry Sentence? J

N

As you loop through
sentences, you will
meet the Berry

sentence. This
procedure will not
have a well defined
outcome.

_ _/

Worse: \

In English, there Is
not always a fact of

the matter about
whether or not a
given sentence

\names a number./

N

“This sentence
refers to the number
/, unless the
number named by
this sentence Is 7.”

_ _/

~

BERRY PARADOX:

“The smallest
natural number that
can’'t be named In
less than fourteen
words.”

_ /

S

Java Is a language
where each program
either produces
nothing or outputs a

unigue string. What
happens when we
express the Berry

\\ paradox in Java? /

Counting

A set of binary stings is "prefix-free”
if no string in the set is a prefix of
another string in the set

Theorem: If S is prefix-free and
contains no strings longer than n,
then S contains at most 2" strings.

For each string x in S, let f(x)
be the string x with n-|X| O's

appended to its right. Thus, f is
a 1-1 map from S into {O,1}".

Storing Poker Hands

I want to store a 5 card poker hand
using the smallest number of bits
(space efficient). The ndive scheme
would use 2 bits for a suit, 4 bits for a
rank, and hence 6 bits per card and 30
bits per hand. How can I do better?

Order the Poker hands
lexicographically

To store a hand all T need is to store
its index of size|log(2,598,960) =22

b‘i’r% \

Let’'s call this the
“Indexing trick”.

N _/

22 Bits Is OPTIMAL

221 < 2 598 560

There are more poker hands than there

are 21 bit strings. Hence, you can't have
a string for each hand.

Incompressibility

We call a binary string x incompressible
if the shortest Binary Java program to
output x is at least as long as x.

Th: Half the strings of any given
length are incompressible

Java is prefix-free so there are at
most 2"! programs of length n-1 or
shorter.

There are 2" strings of length n, and
hence at least half of them have no
smaller length program that outputs
them.

A compressible string

0101010101010101... a million times ..01

public class Counter

{

public static void main(String argv(])

{
for (int i=0; i<1000000; i++)
System.out.print("01");

}

It is possible to define randomness
in ferms of incompressibility

Chaitin

Kolmogorov

Chaitin
Kolmogorov

An incompressible string has no
computable, atypical properties!

Chaitin
Kolmogorov

An incompressible string has no
computable pattern

If a string x is incompressible,
then there is nothing atypical that
you can say about ift.

Suppose D is some atypical, computable
predicate that is true of x. Since D is
atypical, it is not true of many n bit
strings. So compress x by referring to
x by its index i in the enumeration of
strings of length n that have property
D. [Notice the use of the "indexing
trick”

N

When we notice a

_

“pattern”, we
always mean
something
atypical.

_/

N

So when you see a
“pattern” Iin a
sufficiently long string
it allows you to
compress it. Hence,
Incompressible strings
have no pattern.

_ _/

For example, we can\

compress a sufficiently
long Binary string with:

*60% 1's

1 always following 1101
*ASCII Of English Language
Text

_ _/

BERRY PARADOX:

“The smallest

natural number that
can’'t be named In
less than fourteen

\ words.”

Java Berry

The shortest
incompressible string

that is longer than
this Java program

Java Berry

The shortest
incompressible string

that this program can
certify is longer than
this program

Define an Incompressibility
Detector to be a program P such
that:

P(x) = "yes" means x is definitely
incompressible

P(x) = "not sure”, otherwise

Let INCOMPRESSIBLE be a JAVA
incompressibility detector whose
program length is n.

INCOMPRESSIBLE(x) = "yes" means x
is definitely incompressible

INCOMPRESSIBLE(x) = "not sure”,
otherwise

JAVA BERRY

{

ki= bound on length of my program text
Loop x = strings of length k+1 to infinity
{ If INCOMPRESSIBLE(X) Output X}

Text of subroutine for INCOMPRESSIBLE.
}

The shortest incompressible string
that this program can certify is
longer than this program

If JAVA BERRY
outputs ANYTHING

a real paradox would

result!

JAVA BERRY

{
S = Text of subroutine for INCOMPRESSIBLE

ki= STRING_LENGTH(S)
Loop x = strings of length k+b to infinity
{ If EXECUTE(S, X) = "YES" Output X}

Routine for EXECUTE (S,X) which executes the Java program
is the string S on input X

Igou‘ring for STRING_LENGTH(S) returns the length of string

)
BERRY has text length b + n

Note: b is a constant, independent of n

JAVA BERRY OUTPUTS NOTHING.

Theorem: There is a constant b such
that no INCOMPRESSIBLE detector of
length n outputs “yes" on any string of

length greater than n+b.

Proof: If so, we could use it inside Java
Berry and obtain a contradiction.

Let M be a sound, formal system that can be
presented as a n-bit program enumerating
consequences of its axioms.

No statement of the form
"X is incompressible”

for X of length > n+b
is a consequence of .

You fix any n-bit
foundation for
mathematics. Now

\

consider that half of the

strings of length m>n+Db
are incompressible. Your
foundation can’t prove that

N

any one of them Is
Incompressible.

_/

/

Random Unknowable
Truths.

\

_/

—_

-

Define Q to be the
probabillity that a
random program

halts.

_/

2

halting programs p

2—Iength of p

/

\

Q Is a maximally

unknowable
number

_/

—_

- I

Q Is the optimally

compressed form
of the halting
oracle.

. Y

/Let Q. be the first n-\

bits of Q. By the

properties of binary
representation:

\\ Q-Q <IHn /

The first n bits of £ give enough
information to solve the halting
problem for any program with
length bounded by n.

Let Q, be the first n bits of Q. Let P be a
program of length n, of weight 2.

Start with a balance with Q, on the left side
and nothing on the other:

Q

n

\ Notice that Q, + 3"is greater than Q

The first n bits of £ give enough
information to solve the halting
problem for any program with
length bounded by n.

Now start time sharing to run every program
except P for an infinite number of steps
each. If a program M halts, put weight 3!M|
on the right side:

[Z|M....]

A

Converging to Q or to Q - (1/2)

The first n bits of £ give enough
information to solve the halting

problem for any program with
length bounded by n.

If P halts, then W< Q- 3"<Q,_ Hence, the
balance will never tip.

If P does not halt, W converges to Q, and
hence the balance must tip.

W= 3" [3[M..]

The first n bits of £ give enough
information to solve the halting
problem for any program with
length bounded by n.

L:=0
Timeshare each program M, except P

When a program of length a halts, add 2-¢ to
L

When the first n bits of L equals the first n-

bits of Q, any length <= n program that is
going to halt will have halted.

Busy Beaver Function

BusyBeaver(n) = max running time of
any halting program of length n.

In BusyBeaver(n) we can unpack the
first n bits of information encoded in
Omega.

From n-bits of Q we can find all

incompressible strings of length
n+1

Determine all the programs of length n
that halt. Run them and cross off any
(n+1)-bit strings they output. The

strings that are left are
incompressible.

n bits of axioms can only help you
khow n + b bits of {2

Or else you could prove
that strings longer than your

axiom system were
Incompressible

Q Is not compressible by
more than b.

Suppose you could compress n bits of

Q by more b to get a string X.
Decompress X and use it to find an

incompressible strings of length n+1 and
output it. This method has the length
of X plus b which is still less than n+1.
Contradiction.

Busy Beaver Function

BusyBeaver(n) = max running time of
any halting program of length n.

In BusyBeaver(n) we can unpack the
first n bits of information encoded in
Omega.

Busy Beaver Function

BusyBeaver(n) = max running time of
any halting program of length n.

What is the growth rate of
BusyBeaver?

Grows faster than any computable
function!

Suppose a computable f(n) >
BusyBeaver(n)

BusyBeaver(n) = max running time of
any halting program of length n.

Run all n-bit programs for f(n) time.

The ones that have not halted will
never halt.

g A

Reason IS our most
powerful tool, but
some truths of the

mathematical world
have no pattern, or
representation that

can be reasoned

about. ////

/ We can make a \

Diophantine
polynomial U in 16
variables such that

when X, Is fixed to Kk,
the resulting

polynomial has a root
Iff the kth Dbit of

Omega is 1. /

CIRCUIT-SATISFIABILITY

Given a circuit with n-inputs and one
output, is there a way to assign O-1
values to the input wires so that the
output value is 1 (true)? 11

(|

AND

Yes, this circuit is satisfiable.

I't has satisfying assignment
110.

CIRCUIT-SATISFIABILITY

Given: A circuit with n-inputs
and one output, is there a way
to assign O-1 values to the input

wires so that the output value
is 1 (true)?

BRUTE FORCE: Try out all 2" assignments

3-colorability Circuit Satisfiability

I |

AND NOT

A Graph Named "Gadget”

\
A\
\

A\ \N
S

\/

How do we force the
graph to be 3 colorable
exactly when the circuit
IS satifiable?

TRUE

Satisfiability of this
circuit =
3-colorabillity of this
graph

You can quickly transform a
method to decide 3-coloring into a
method to decide circuit
satifiability!

