- | Great Theoretical Ideas In Computer Science

Steven Rudich

CS 15-251 Spring 2004

Lecture 27

April 22, 2004

Carnegie Mellon University

Thales' Legacy:
What Is A Proof?

Thales Of Miletus (600 BC)
Insisted on Proofs!

“first mathematician”

Most of the starting theorems of
geometry. SSS, SAS, ASA, angle sum
equals 180, . ..

N

So what is a proof?

Intuitively, a proof is a
sequence of
“statements”, each of
% which follows “logically”
from some of the
previous steps. /

go!

\

What are "statements”?
What does it mean for
one to follow "logically”

from another?

_

\

Intuitively, statements
must take place in some
language.

Formally, statements will
take place ina
computable language.

Let Sbea compu‘rablﬁ
language over 3. That is,
S'c 3P and there isa

Java program Ps(x) that
outputs Yes if X€S, and

outputs No otherwise.

S implicitly defines the
“syntactically valid”
statements of a language.

We define our “language”m
be a decidable set of strings
S. Any s€Sis called a
STATEMENT or a
SYNTACTICALLY VALID
% string.
Before pinning down the
notion of “logic”, let's see
some examples of languages
in mathematics.

In fact, valid language\
syntax is typically
defined inductively, so it
is easy to make a
% recursive program to
recoghize the strings
considered valid.

Example: \
Let S be the set of all
syntactically well formed
statements in Peano
% Arithmetic.
VX SX = X
Vx Sx = SX
But not: ===

Valid Peano Syntax.

Exp -> 0| S (Exp)
V= X1, X2, X3,

Statement ->

E=E

3V (Statement)

vV (statement)
(statement) &£ (statement)
—(statement)

Recursive Program

ValidPeano(s)
return True if any of the following:

S has form V x (T) and Validyroof(T)
S has form ...

Example:

Let S be the set of all

syntactically well formed
statements in

propositional logic.

X C X
XY EY
Butno:: £EX EY

Example:

Let S be the set of all
syntactically well formed
statements in first-order
logic.

Vx P(x)
Vx3yvz f(xy,z) = g(x.y,z)

Example:

Let S be the set of all
syntactically well formed
statements Euclidean
Geometry.

Now we have a way fo
precisely define what it
means to set forth a
syntactically valid set of
statements ina
“language”.

What is “logic" and what
is "meaning"?

In fact, we will continue
to ignore "meaning” and
pin down our concepts in
purely symbolic
(syntactic) terms.

T T

We have a computable
set of "statements” S.

Fix any single computable
logic function: Logics(x,y)
= Yes/No

If Logic(x,y) = Yes, we
say that y is implied by x.

Frarre I e

In fact, let's expand ﬂm

inputs space of our logic
function to include a

start statement” A not

% inS.

Logicg(A,S) = Yes
will mean that our logic
views S as an axiom.

w

A sequence of sfm‘emenh

S1,S2, .., Sy is a VALID
PROOF of statement Q in

LOGIC, iff
% LOGIC(A, s;) = True
And for n+1> i>1
LOGIC (siy,5) = True
s h=Q

Notice that our notion of
"valid proof” is purely
symbolic. In fact, we can
make a proofcheck machine
to read it and gives a
VLID/INVALID answer.

o

Let S be a set of
tatements. Let L be a logic
function.

S
% PROVABLE;, =

All Q€S for which there is a
valid proof of Q in logic L

/

Example: SILLY FOO FOO 1

S = All strings.
L = All pairs of the form: <A, s> s€S

PROVABLEs;, is the set of all strings.

Example: SILLY FOO FOO 2

S = All strings.
L =<A, 0>, <A, 15, and
All pairs of the form: <s,s0> or <s, s1>

PROVABLEs;, is the set of all strings.

Example: SILLY FOO FOO 3

S = All strings.

L =<A, 0>, <A, 11>, and
All pairs of the form:
<s,50> or <st, s1tl>

PROVABLE;, is the set of all strings
with a zero parity.

Example: SILLY FOO FOO 4

S = All strings.
L=<A, 05 ,<A, 1>, and
All pairs of the form:
<s,50> or <st, s1tl>

PROVABLEs;, is the set of all strings.

Example: Propositional Logic

S = All well-formed formulas in the notation
of Boolean algebra.

L = Two formulas are one step apart if one
can be made from the other from a finite list
of forms.

(hopefully) PROVABLE; is the set of all
formulas that are tautologies in propositional
logic.

We know what valid\
syntax is, what logic,
proof, and theorems are

Where does "truth” and
“meaning” come in it?

_/

Let S be any compu‘rabm

language. Let TRUTH; be
any fixed function from
S to (T, F}.

We will say that we have
a "truth concept”
associated with the
strings in S.

The world of \

mathematics has certain
established truth

concepts associated with
logical statements.

Let A(xq, X5, .., X,) be a
syntactically valid
Boolean proposition.

TRUTH o 1ogic (A) is T iff
any setting of the
variables evaluates to
true. A would be called a
tautology.

(e

GENERAL PICTURE:

A decidable set of
statements S.

A (possibly incomputable)
Truth concept TRUTH_S:
S 2 {True, False}

e

We work in logics that @
think are related to our
truth concepts.....

A (possibly incomputable)
Truth concept TRUTH_S:

S 2 {True, False}

T

\

A logic is "sound"” for a
truth concept if
everything it proves is
true according to the
truth concept.

TR

L is SOUND for TRUTH, h
L(A, A) = true

=TRUTH(A)= True

L(B,C)=true and
TRUTH(B)=True

=TRUTH(C)=True

P

If L is sound for TRUT%
Then

L proves C

=TRUTH(C) = yes

=

L is sound for TRUTHS\

means that L can't prove
anything false for the
truth concept TRUTH.

_/

e

Boolean algebra is \
SOUND for the truth
concept of propositional
tautology.
High school algebra is
SOUND for the truth
concept of algebraic
equivalence.

~

SILLY FOO FOO 3 is
% SOUND for the truth
concept of an even
number of ones.

Euclidean Geometry IS\
SOUND for the truth
concept of facts about
points and lines in the
Euclidean plane.
Peano Arithmetic is SOUND
for the truth concept of
(first order) number facts
about Natural number'S/

A logic may be SOUNN
but it still might not be
complete.

% A logic is “complete” if it
can prove every

statement that is True in
the truth concept.

~

ROVABLESL C TRUTHS

TRUTHS C PROVABLESL

\

SOUND:
PROVABLE, C TRUTH

COMPLETE:
% TRUTH, C PROVABLE,
Ex: Axioms of Euclidean
Geometry are known to be
sound and complete for the

truths of line and point in
the plane.

COMPLETE:
% TRUTH, C PROVABLES,

\

SOUND:
PROVABLE, C TRUTH

SILLY FOO FOO 3 is sound

and complete for the truth

concept of strings having an
even number of 1s.

Example: SILLY FOO FOO 3

S = All strings.

L =<A, 0>, <A, 11>, and
All pairs of the form:
<s,50> or <st, s1tl>

PROVABLE;, is the set of all strings
with a zero parity.

What is a proof?

A language.
A truth concept.

A logic that is sound (maybe even
complete) for the truth concept.

What is a proof?

A language.
A truth concept.

A logic that is sound (maybe even
complete) for the truth concept.

An ENUMERABLE list of PROVABLE
THEOREMS in the logic.

A set S is Recursively Enumerable if its
elements can be printed out by a
computer program.

In other words:

There is a program LISTg that outputs
a list of strings separated by spaces,
and such that an element is on the list
if and only if it isin S.

SUPER IMPORTANT

Let F be any logic.

We can write a program to enumerate
the provable theorems of F.

Listing THEOREMS;
k:=0;
For sum = O to forever do

{Let PROOF loop through all strings of length k do

{Let STATEMENT loop through strings of
length <k do

If proofcheck(STATEMENT, PROOF) = valid,
output STATEMENT

K+
}
}

Whatever the details of our
proof system, an inherent
property of any proof
system is that its theorems
are recursively enumerable

i

Recall: SELF-REFERENCE

Theorem: God is not omnipotent.

Proof: Let S be the statement “God
can't make a rock so heavy that he can't
lift it.". If S is true, then there is
something God can't do, and is hence
not omnipotent. If S is false, then God
can't lift the rock

Alan Turing (1912-1954)

THEOREM: There is no program to
solve the halting problem
(Alan Turing 1937)

Suppose a program HALT, solving the
halting problem, existed:

HALT(P)= vyes, if P(P) halts
HALT(P)= no, if P(P)does not halt

We will call HALT as a subroutine ina
new program called CONFUSE.

CONFUSE(P):

If HALT(P) then loop_for_ever

Else return (i.e., halt)

<text of subroutine HALT goes here>

Does CONFUSE(CONFUSE) halt?

YES implies HALT(CONFUSE) = yes
thus, CONFUSE(CONFUSE) will not halt

NO implies HALT(CONFUSE) = no
thus, CONFUSE(CONFUSE) halts

CONFUSE(P):

If HALT(P) then loop_for_ever

Else return (i.e., halt)

<text of subroutine HALT goes here>

Does CONFUSE(CONFUSE) halt?

YES implies HALT(CONFUSE) = yes
thus, CONFUSE(CON ill not halt
NO implies HALT{CONFUSE) = no

thus, CONFUSE(CONFUSE) halts

K={P | P(P) halts }

K is an undecidable set. There is no
pr‘ocedur‘e running on an ideal machine

glve es/no answers for all questions
orm "x € K

Self-Reference Puzzle

Write a program that prints itself out
as output. No calls to the operating
system, or to memory external fo the
program.

Auto_Cannibal_Maker

Werite a program AutoCannibalMaker that takes the
text of a program EAT as input and outputs a
program called SELFg,r. When SELFe,r is executed
it should output EAT(SELFg,1).

For any (input taking) program: EAT
AutoCannibalMaker(EAT) = SELFg,r

SELFg4r is a program taking no input.
When executed SELFg,r should output EAT(SELF,;)

Auto Cannibal Maker
Suppose Halt with no input was

programmable in JAVA.
Write a program AutoCannibalMaker that
takes the text of a program EAT as mpu’r and
oquuTs a program called SELFg,

is execufed it should ou¥puf
EAT(E"ET Fear)

Let EAT(P) = halt, if P does not halt
loop forever, otherwise.

What does SELFg,t do?

Contradiction! Hence EAT does not have
a corresponding JAVA program.

10

Theorems of F

Define the set of provable theorems of F to
be the set:

THEOREMS; =
{ STATEMENT € 5" |
3 PROOF € 5,

proofcheck(STATEMENT, PROOF) = valid }

Example: Euclid and ELEMENTS.

We could write a program ELEMENTS to
check STATEMENT, PROOF pairs to
determine if PROOF is a sequence, where
each step is either one logical inference, or
one application of the axioms of Euclidian
geometry.

THEOREMSELEMENTS is the set of all
statement provable from the axioms of
Euclidean geometry.

Example: Set Theory and SFC.

We could write a program ZFC to check
STATEMENT, PROOF pairs to determine if
PROOF is a sequence, where each step is
either one logical inference, or one
application of the axioms of Zermilo Frankel
Set Theory, as well as, the axiom of choice.

THEOREMS ¢ is the set of all statement
provable from the axioms of set theory.

Example: Peano and PA.

We could write a program PA to check
STATEMENT, PROOF pairs to determine if
PROOF is a sequence, where each step is
either one logical inference, or one
application of the axioms of Peano
Arithmetic

THEOREMS;,, is the set of all statement
provable from the axioms of Peano
Arithmetic

Listing THEOREMS;
k:=0;
For sum = O to forever do

{Let PROOF loop through all strings of length k do

{Let STATEMENT loop through strings of
length <k do

If proofcheck(STATEMENT, PROOF) = valid,
output STATEMENT

K+

}

Whatever the details of our
proof system, an inherent
property of any proof
system is that its theorems
are recursively enumerable

i

11

Language and Meaning

By a language, we mean any
syntactically defined subset of =

By truth value, we mean a SEMANTIC
function that takes expressions in the
language to TRUE or FALSE.

Truths of Natural Arithmetic
ARITHMETIC _TRUTH =

All TRUE expressions of the language
of arithmetic (logical symbols and
quantification over Naturals).

Truths of Euclidean Geometry
EUCLID _TRUTH =

All TRUE expressions of the language
of Euclidean geometry.

Truths of JAVA program behavior.
JAVA _TRUTH =

All TRUE expressions of the form
program P on input X will output Y, or
program P will/won't halt.

TRUTH versus PROVABILITY

Let L be a language L, with a well defined
truth function.

If proof system F proves only true
statements in the language, we say that F is
SOUND.

If F proves all statements in language, we say
that F is COMPLETE.

TRUTH versus PROVABILITY
Happy News:
THEOREMSELEMENTS = EUCLID_TRUTH

The ELEMENTS are SOUND and
COMPLETE for geometry.

12

TRUTH versus PROVABILITY

THEOREMS;, is a proper subset of
ARITHMETIC_TRUTH

PA is SOUND.
PA is not COMPLETE.

TRUTH versus PROVABILITY

FOUNDATIONAL CRISIS: It is impossible
to have a proof system F such that

THEOREMS; =
ARITHMETIC_TRUTH

F is SOUND will imply F is INCOMPLETE for
arithmetic.

JAVA_TRUTH is not R.E.

Assume a E}r‘oar‘am LIST enumerates
JAVA_TRUTH.

We can now make a program Halt(P)

Run list until one of the two statements
appears: “P(P) halts”, or "P(P) does not halt".
utput the appropriate answer.

Contradiction of undecidability of K.

JAVA_TRUTH has no proof system..

There is no proof system for JAVA{RUTH.

Let F be any ﬁa_r‘oosysfem. There must be a
program LIST to enumerate THROEMSk.

THEOREM: is R E.
JAVA_TRUTH is not RE.

So THEOREMS, # JAVA_TRUTH

Whatever the details of our
proof system, an inherent
property of any proof
system is that its theorems
are recursively enumerable

i

JAVA TRUTH is not\
recursively enumerable.

Hence, JAVA_TRUTH has
% no sound and complete

proof system.

13

ARITHEMTIC_TRUTH Q
not recursively
enumerable.

% Hence,
ARITHMETIC_TRUTH has
no sound and complete
proof system!!!!

Hilbert's Question [1900]

Is there a foundation for mathematics
that would, in principle, allow us to
decide the truth of any mathematical
proposition? Such a foundation would
have to give us a clear procedure
(algorithm) for making the decision.

Foundation F

Let F be any foundation for
mathematics:

*F is a proof system that only proves
true things [Soundness]
*The set of valid proofs is computable.

[There is a program to check any
candidate proo? in this system]

INCOMPLETENESS

Let F be any attempt to give a
foundation for mathematics

We will construct a statement
that we will all believe to be
true, but is not provable in F.

CONFUSER(P)
Loop though all sequences of symbols S

If Sis avalid F-proof of "P halts”,
then LOOP_FOR_EVER

If Sis avalid F-proof of "P never
halts", then HALT

GODEL;

GODEL,=
AUTO_CANNIBAL_MAKER(CONFUSE;)

Thus, when we run GODEL; it will do the
same thing as:

CONFUSEL(6ODEL;)

14

GODEL:
Can F prove GODEL; halts?

Yes -> CONFUSEL(GODEL;) does not halt
Contradiction

Can F prove GODEL; does not halt?

Yes -> CONFUSEL(GODEL;) halts
Contradiction

GODEL;
F can't prove or disprove that GODELF halts.

GODEL¢ = CONFUSER(GODELg)
Loop though all sequences of symbols S

If Sisavalid F-proof of "GODEL¢ halts”,
then LOOP_FOR_EVER

If Sis avalid F-proof of "GODEL¢ never
halts”, then HALT

GODEL:
F can't prove or disprove that GODEL halts.

Thus CONFUSE-(GODEL) = GODEL¢ will not
halt. Thus, we have just proved what F can't.

F can't prove something that we know is true.

It is not a complete foundation for
mathematics.

CONCLUSION

No fixed set of assumptions F can
provide a complete foundation for
mathematical proof. In particular, it
can't prove the frue statement that
GODEL does not halt.

Godel/Turing: Any statement S of the
form “Program P halts on input x" can
be easily translated to an equivalent
statement S' in the language of Peano
Arithmetic. I.e, S is true if and only if
S'is true.

Hence: No mathematical domain that
contains (or implicitly expresses) Peano
Arithmetic can have a complete
foundation.

GODEL'S
INCOMPLETENESS THEOREM

In 1931, Godel stunned the world by
proving that for any consistent axioms
F there is a true statement of first
order number theory that is not
provable or disprovable by F. I.e., a
true statement that can be made using
0, 1, plus, times, for every, there
exists, AND, OR, NOT, parentheses,
and variables that refer to natural
numbers.

15

So what is mathematics?

We can still have rigorous, precise axioms
that we agree to use in our reasoning (like
the Peano Axioms, or axioms for Set
Theory). We just can’t hope for them to be
complete.

Most working mathematicians never hit these
points of uncertainty in their work, but it
does happen!

ENDNOTE

You might think that Gddel's theorem
proves that are mathematically capable
in ways that computers are not. This
would show that the Church-Turing
Thesis is wrong.

Godel's theorem proves no such thing!

We can talk
about this
over coffee.

16

