Great Theoretical Ideas In Computer Science
Steven Rudich CS 15-251 Spring 2004
Lecture 27 April 22, 2004 Carnegie Mellon University

Thales’ Legacy:
What Is A Proof?

Thales Of Miletus (600 BC)
Insisted on Proofs!

“first mathematician”

Most of the starting theorems of
geometry. SSS, SAS, ASA, angle sum

equals 180, . ..

Y%

£\

So what is a proof?

Intuitively, a proof is a
sequence of
“statements”, each of

-* which follows “logically"

from some of the
previous steps.

What are "statements”?
What does it mean for
one to follow "“logically”

-* from another?

Intuitively, statements
must take place in some
language.

. Formally, statements will
take place in a
computable language.

Let S be a computable

Ianguage over >. That is,
Sc 2Yand thereisa

Java progmm P.(x) that

outputs Yes if x€$, and
outputs No otherwise.

S implicitly defines the
"syntactically valid"
- statements of a language.

We define our "language” to
be a decidable set of strings
S. Any scS is called a
STATEMENT or a
SYNTACTICALLY VALID

string.

Before pinning down the
notion of “logic”, let's see
some examples of languages
in mathematics.

In fact, valid language
syntax is typically
defined inductively, so it
IS easy to make a
recursive program to

recognize the strings
considered valid.

Example:

Let S be the set of all
syntactically well formed
statements in Peano
Arithmetic.

VX SX = X
VX Sx = SX
But not: ===

Valid Peano Syntax.

Exp ->0 | S (Exp)
V= X, X5, X3, ...

Statement ->

E=E
3V (Statement)

VvV (statement)
(statement) &£ (statement)
—(statement)

Recursive Program

ValidPeano(s)
return True if any of the following:

S has form V x (T) and Valid.roof(T)
S has form

Example:

Let S be the set of all
syntactically well formed
statements in
propositional logic.

X C =X
XY E£Y
But not: E X £ Y

Example:
Let S be the set of all
syntactically well formed
statements in first-order

* logic.

Vx P(x)
vx3yvz f(x,y,z) = 9(x,y,z)

Example:

Let S be the set of all
syntactically well formed
statements Euclidean
Geometry.

Now we have a way to
precisely define what it
means to set forth a
syntactically valid set of
statements in a
"language”.

What is "logic" and what
IS "meaning"?

In fact, we will continue

to ignore "meaning” and

pin down our concepts in
purely symbolic

(syntactic) terms.

We have a computable
set of "statements” S.

Fix any single computable
logic function: Logics(x,y)
= Yes/No

If Logic(x,y) = Yes, we
say that y is implied by x.

In fact, let's expand the
inputs space of our logic
function to include a
“start statement” A not
In S.

Logics(A,S) = Yes
will mean that our logic
views S as an axiom.

A sequence of statements
S{, S, ..., S, iIsa VALID
PROOF of statement Q in
LOGIC, iff

LOGIC(A, s;) = True

And for n+1> i>1
LOGIC (s, ;,s:) = True

s h=Q

Notice that our notion of
“valid proof” is purely
symbolic. In fact, we can
make a proofcheck machine
to read it and gives a

VLID/INVALID answer.

Let S be a set of
statements. Let L be a logic
function.

PROVA BLES,L -

All QS for which there is a
valid proof of Q in logic L

Example: SILLY FOO FOO 1

S = All strings.
L = All pairs of the form: <A, s> s€S

PROVABLEg; is the set of all strings.

Example: SILLY FOO FOO 2

S = All strings.
L =<A, 0>, <A, 1>, and
All pairs of the form: <s,s0> or <s, s1>

PROVABLEg; is the set of all strings.

Example: SILLY FOO FOO 3

S = All strings.

L =<A, 0>, <A, 11>, and
All pairs of the form:
<s,50> or <st, s1tl>

PROVABLEg is the set of all strings
with a zero parity.

Example: SILLY FOO FOO 4

S = All strings.

L = <A, 0>, <A, 1>, and
All pairs of the form:
<s,50> or <st, s1tl>

PROVABLEg; is the set of all strings.

Example: Propositional Logic

S = All well-formed formulas in the notation
of Boolean algebra.

L = Two formulas are one step apart if one
can be made from the other from a finite list
of forms.

(hopefully) PROVABLE; is the set of all
formulas that are tautologies in propositional
logic.

We know what valid
syntax is, what logic,
proof, and theorems are

Where does "truth” and
"meaning” come in it?

Let S be any computable

language. Let TRUTH, be

any fixed function from
S to {T, F}.

We will say that we have
a "truth concept”
associated with the
strings in S.

The world of

mathematics has certain
established truth
concepts associated with

logical statements.

Let A(xq, X5, .., X,,) be a
syntactically valid
Boolean proposition.

TRUTH, o5 0gic (A) is T iff
any setting of the
variables evaluates to
true. A would be called a
tautology.

GENERAL PICTURE:

A decidable set of
statements S.

oY

A (possibly incomputable)
Truth concept TRUTH_S:
S 2 {True, False}

We work in logics that we
think are related to our
truth concepts

-i A (possibly incomputable)

Truth concept TRUTH_S:
S 2 {True, False}

A logic is "sound” for a
truth concept if
everything it proves is
true according to the

truth concept.

L is SOUND for TRUTH, if

L(A, A) = true
=TRUTH(A)= True

B

L(B,C)=true and
TRUTH(B)=True

=TRUTH(C)=True

If L is sound for TRUTH,

Then

-* L proves C

=TRUTH(C) = yes

L is sound for TRUTH,

means that L can't prove
anything false for the
truth concept TRUTH.

Boolean algebra is
SOUND for the truth
concept of propositional
tautology.

High school algebra is
SOUND for the truth
concept of algebraic
equivalence.

SILLY FOO FOO 3 is
* SOUND for the truth

concept of an even
number of ones.

Euclidean Geometry is
SOUND for the truth
concept of facts about
points and lines in the
Euclidean plane.

Peano Arithmetic is SOUND
for the truth concept of
(first order) number facts
about Natural numbers.

A logic may be SOUND
but it still might not be
complete.

-i A logic is "complete” if it

can prove every
statement that is True in
the truth concept.

SOUND:
PROVABLEs, C TRUTH;

s& COMPLETE:

TRUTH, C PROVABLE,,

SOUND:
PROVABLES, € TRUTHq

COMPLETE:
TRUTHs € PROVABLES,

Ex: Axioms of Euclidean
Geometry are known to be
sound and complete for the
truths of line and point in
the plane.

SOUND:
PROVABLES, € TRUTHq

COMPLETE:
TRUTHs € PROVABLES,

SILLY FOO FOO 3 is sound

and complete for the truth

concept of strings having an
even number of 1s.

Example: SILLY FOO FOO 3

S = All strings.

L =<A, 0>, <A, 11>, and
All pairs of the form:
<s,50> or <st, s1tl>

PROVABLEg is the set of all strings
with a zero parity.

What is a proof?

A language.
A truth concept.

A logic that is sound (maybe even
complete) for the truth concept.

What is a proof?

A language.
A truth concept.

A logic that is sound (maybe even
complete) for the truth concept.

An ENUMERABLE list of PROVABLE
THEOREMS in the logic.

A set S is Recursively Enumerable if its
elements can be printed out by a
computer program.

In other words:

There is a program LIST, that outputs
a list of strings separated by spaces,
and such that an element is on the list
if and only if it isin S.

SUPER IMPORTANT

Let F be any logic.

We can write a program to enumerate

the provable theorems of F.

Listing THEOREMS:

k;=0;
For sum = O to forever do

{Let PROOF loop through all strings of length k do

{Let STATEMENT loop through strings of
length <k do

If proofcheck(STATEMENT, PROOF) = valid,
output STATEMENT

k++

}

Whatever the details of our
proof system, an inherent
property of any proof
system Is that its theorems
are recursively enumerable

Recall: SELF-REFERENCE

Theorem: God is hot omnipotent.

Proof: Let S be the statement "God
can't make a rock so heavy that he can't
lift it.". If S is true, then there is
something God can't do, and is hence
not omnipotent. If S is false, then God
can't lift the rock

Alan Turing (1912-1954)

THEOREM: There is no program to
solve the halting problem
(Alan Turing 1937)

Suppose a program HALT, solving the
halting problem, existed:

ALT(P)= vyes, if P(P) halts
ALT(P)= no, if P(P) does not halt

We will call HALT as a subroutine in a
new program called CONFUSE.

CONFUSE(P):

If HALT(P) then loop_for_ever

Else return (i.e., halt)

<text of subroutine HALT goes here>

Does CONFUSE(CONFUSE) halt?

YES implies HALT(CONFUSE) = yes
thus, CONFUSE(CONFUSE) will not halt

NO implies HALT(CONFUSE) = no
thus, CONFUSE(CONFUSE) halts

CONFUSE(P):

If HALT(P) then loop_for_ever

Else return (i.e., halt)

<text of subroutine HALT goes here>

Does CONFUSE(CONFUSE) halt?

YES implies HALT(CONFUSE) yes

’rhus CONFUSE(C ill not halt

— CONTRADICTION —
NO implies HALT(CONFUSE) = no

thus, CONFUSE(CONFUSE) halts

K={P | P(P) halts }

K is an undecidable set. There is no
procedure running on an ideal machine

to give es/no answers for all questions
of The form "x € K?

Self-Reference Puzzle

Write a program that prints itself out
as output. No calls to the operating
system, or to memory external to the

program.

Auto_Cannibal Maker

Write a program AutoCannibalMaker that takes the
text of a program EAT as input and outputs a
program called SELFg,. When SELFg,+ is executed
It should output EAT(SELFg.1).

For any (input taking) program: EAT
AutoCannibalMaker(EAT) = SELFg, 1

SELFg4t is a program taking no input.
When executed SELFg,+ should output EAT(SELF,,;)

Auto Cannibal Maker
Suppose Halt with no input was
programmable in JAVA.

Werite a program AutoCannibalMaker that
takes the text of a program EAT as input and
outputs a program called SELFg,1. When
SELFg, is executed it should output
EAT(SELFe)

Let EAT(P) = halt, if P does not halt
loop forever, otherwise.

What does SELFg,t do?

Contradictionl Hence EAT does not have
a corresponding JAVA program.

Theorems of F

Define the set of provable theorems of F to
be the sef:

{ STATEMENT € " |

3 PROOF € 37,
proofcheck(STATEMENT, PROOF) = valid }

Example: Euclid and ELEMENTS.

We could write a program ELEMENTS to
check STATEMENT, PROOF pairs to
determine if PROOF is a sequence, where
each step is either one logical inference, or
one application of the axioms of Euclidian
geomeftry.

THEOREMSELEN\ENTS IS the set Of all
statement provable from the axioms of
Euclidean geomeftry.

Example: Set Theory and SFC.

We could write a program ZFC to check
STATEMENT, PROOF pairs to determine if
PROOF is a sequence, where each step is
either one logical inference, or one
application of the axioms of Zermilo Frankel
Set Theory, as well as, the axiom of choice.

THEOREMS,¢ is the set of all statement
provable from the axioms of set theory.

Example: Peano and PA.

We could write a program PA to check
STATEMENT, PROOF pairs to determine if
PROOF is a sequence, where each step is
either one logical inference, or one
application of the axioms of Peano
Arithmetic

THEOREMS,, is the set of all statement
provable from the axioms of Peano
Arithmetic

Listing THEOREMS:

k;=0;
For sum = O to forever do

{Let PROOF loop through all strings of length k do

{Let STATEMENT loop through strings of
length <k do

If proofcheck(STATEMENT, PROOF) = valid,
output STATEMENT

k++

}

Whatever the details of our
proof system, an inherent
property of any proof
system Is that its theorems
are recursively enumerable

Language and Meaning

By a language, we mean any
syntactically defined subset of ¥

By truth value, we mean a SEMANTIC
function that takes expressions in the
language to TRUE or FALSE.

Truths of Natural Arithmetic

ARITHMETIC _TRUTH =

All TRUE expressions of the language

of arithmetic (logical symbols and
quantification over Naturals).

Truths of Euclidean Geometry

EUCLID _TRUTH =

All TRUE expressions of the language
of Euclidean geometry.

Truths of JAVA program behavior.

JAVA _TRUTH =

All TRUE expressions of the form
program P on input X will output Y, or
program P will/won't half.

TRUTH versus PROVABILITY

Let L be a language L, with a well defined
truth function.

If proof system F proves only true

statements in the language, we say that F is
SOUND.

If F proves all statements in language, we say
that F is COMPLETE.

TRUTH versus PROVABILITY

Happy News:

TH EOREMSELEMENTS = EUCLI D_TRUTH

The ELEMENTS are SOUND and
COMPLETE for geometry.

TRUTH versus PROVABILITY

THEOREMS;, is a proper subset of

ARITHMETIC_TRUTH

PA is SOUND.
PA is not COMPLETE.

TRUTH versus PROVABILITY

FOUNDATIONAL CRISIS: It is impossible
to have a proof system F such that

ARITHMETIC_TRUTH

F is SOUND will imply F is INCOMPLETE for
arithmetic.

JAVA_TRUTH is not R.E.

Assume a anmm LIST enumerates
JAVA_TRUTH.

We can now make a program Halt(P)

Run list until one of the two statements
appears: "P(P) halts”, or "P(P) does not halt".
utput the appropriate answer.

Contradiction of undecidability of K.

JAVA_TRUTH has no proof system..

There is no proof system for JAVA-RUTH.

Let F be any le_roosys’rem. There must be a

program LIST to enumerate THROEMS:.

THEOREM, is R,E.
JAVA_TRUTH is not RE.

So THEOREMS; # JAVA_TRUTH

Whatever the details of our
proof system, an inherent
property of any proof
system Is that its theorems
are recursively enumerable

JAVA TRUTH Is not
recursively enumerable.

Hence, JAVA TRUTH has
no sound and complete

proof system.

ARITHEMTIC TRUTH Is
not recursively
enumerable.

Hence,

ARITHMETIC TRUTH has
no sound and complete
proof system!!!!

Hilbert's Question [1900]

Is there a foundation for mathematics
that would, in principle, allow us to
decide the truth of any mathematical
proposition? Such a foundation would
have to give us a clear procedure
(algorithm) for making the decision.

Foundation F

Let F be any foundation for
mathematics:

*F is a proof system that only proves

true things [Soundness]

*The set of valid proofs is computable.
[There is a program to check any
candidate proof in this system]

INCOMPLETENESS

Let F be any attempt to give a
foundation for mathematics

We will construct a statement
that we will all believe to be
true, but is not provable in F.

CONFUSEL(P)

Loop though all sequences of symbols S

If Sis a valid F-proof of "P halts”,
then LOOP_FOR_EVER

If Sis a valid F-proof of "P never
halts”, then HALT

GODEL-

GODEL =
AUTO_CANNIBAL_MAKER(CONFUSE;)

Thus, when we run GODEL: it will do the
same thing as:

CONFUSE-(GODEL,)

GODEL
Can F prove GODEL¢ halts?

Yes -> CONFUSER(GODEL) does not halt
Contradiction

Can F prove GODEL¢ does not halt?

Yes -> CONFUSEF(GODELF) halts
Contradiction

GODEL-

F can't prove or disprove that GODEL halts.

GODEL- = CONFUSEL(GODEL)
Loop though all sequences of symbols S

If Sis avalid F-proof of "GODELF halts”,
then LOOP_FOR_EVER

If Sis avalid F-proof of "GODEL¢ never
halts”, then HALT

GODEL
F can't prove or disprove that GODEL halts.

Thus CONFUSE(GODELf) = GODELg will not
halt. Thus, we have just proved what F can't.

F can't prove something that we know is true.
It is not a complete foundation for
mathematics.

CONCLUSION

No fixed set of assumptions F can
provide a complete foundation for
mathematical proof. In particular, it
can't prove the true statement that

GODEL: does not halt.

Godel/Turing: Any statement S of the
form "Program P halts on input x" can
be easily translated to an equivalent
statement S’ in the language of Peano
Arithmetic. I.e, S is true if and only if
S'is true.

Hence: No mathematical domain that
contains (or implicitly expresses) Peano
Arithmetic can have a complete
foundation.

GODEL'S
INCOMPLETENESS THEOREM

In 1931, Godel stunned the world by
proving that for any consistent axioms
F there is a true statement of first
order number theory that is not

provable or disprovable by F. T.e., a
true statement that can be made using
0, 1, plus, times, for every, there
exists, AND, OR, NOT, parentheses,
and variables that refer to natural
humbers.

So what is mathematics?

We can still have rigorous, precise axioms
that we agree to use in our reasoning (like
the Peano Axioms, or axioms for Set
Theory). We just can't hope for them to be

complete.

Most working mathematicians never hit these
points of uncertainty in their work, but it
does happenl

ENDNOTE

You might think that Godel's theorem
proves that are mathematically capable
in ways that computers are not. This

would show that the Church-Turing
Thesis is wrong.

Godel's theorem proves no such thing!

We can talk
about this

over coffee.

