d

Great Theoretical Ideas In Computer Science

Steven Rudich

CS 15-251 Spring 2005

Lecture 26

April 19, 2005 Carnegie Mellon University

Turing's Legacy:
The Limits Of Computation.

-

5

The HELLO assignment

Write a JAVA program to output the
word "HELLO" on the screen and halt.

Space and time are not an issue. The
program is for an ideal computer.

PASS for any working HELLO program,
no partial credit.

Grading Script

The grading script 6 must be able to
take any Java program P and grade it.

Pass, if P prints only the word
6(P)= "HELLO" and halts.

Fail, otherwise.

How exactly might such a script work?

What kind of program
could a student who
hated his/her TA hand
in?

Nasty Program

n:=0;
While

(nis not a counter-example
to the Riemann Hypothesis)

n++

PRINT "HELLO"

The nasty program is a PASS if and only if the
Riemann Hypothesis is true.

Despite the simplicity of
the HELLO assignment,
there is no program to
correctly grade it! This

% can be proved.

The theory of what can
and can't be computed by
an ideal computer is
called
Computability Theory
or Recursion Theory.

#

Infinite RAM Model

Platonic Version: One memory location
for each natural number O, 1, 2, ...

Aristotelian Version: Whenever you run
out of memory, the computer contacts
the factory. A maintenance person is
flown by helicopter and attaches 100
Gig of RAM and all programs resume
their computations, as if they had
never been interrupted.

Computable Function

Fix any finite set of symbols, Z. Fix any
precise programming language, i.e., Java. A
program is any finite string of characters
that is syntactically valid.

A function f : &¥ -> * is computable if there
is a program P that when executed on an ideal
com;y’rer computes f. That is, for all strings
xe 2 P(x) = f(X).

Countably many computable functions.

Fix any finite set of symbols, Z. Fix any
precise programming language, i.e., Java. A
program is any finite string of characters
that is syntactically valid.

A function f : &¥ -> * is computable if there
is a program P that when executed on an ideal
com;y’rer computes f. That is, for all strings
xe 2 P(x) = f(X).

There are only
countably many Java
%% programs. Hence,
there are onlu
countably many
computable functions.

_

Uncountably many functions.

The functions f: & - > {0,1} are in 1-1
onto correspondence with the subsets
of Z* (the powerset of =").

For any subset S of =" we map to the
function f where:

f(x)=1 xinS
f(x)=0 xnotin$S

Uncountably many functions.

The functions f: & - > {0,1} are in 1-1
onto correspondence with the subsets
of " (the powerset of ").

Then the set of all f: & - > {0,1} has the

% one? Can we describe an

Thus, most funcﬁons\
from =" to {0,1} are not
computable. Can we
describe an incomputable

interesting, incomputable

same size as the powerset of 3. Since function?

3" is countable its powerset is '

uncountably big. /
Notation And Conventions P(P)

« Fix a single programming language

« When we write program P we are
talking about the text of the source
code for P

* P(x) means the output that arises from
running program P on input X,
assuming that P eventually halts

¢ P(x) = O means P did not halt on x

It follows from our conventions that
P(P) means the output obtained when
we run P on the text of its own source
code.

P(P) ... So that's what I look like

S

~—

The Famous Halting Set: K

K is the set of all programs P
such that P(P) halts.

K ={ Java P | P(P) halts}

The Halting Problem
Is there a program HALT such that:

HALT(P)= vyes, if P(P) halts
HALT(P)= no, if P(P)does not halt

The Halting Problem
K={P | P(P) halts }

Is there a program HALT such that:

HALT(P)= yes, if POK
HALT(P)= no, if POK

HALTS decides whether or not any
given program is in K.

THEOREM: There is no program to
solve the halting problem
(Alan Turing 1937)

Suppose a program HALT, solving the
halting problem, existed:

HALT(P)= vyes, if P(P) halts
HALT(P)= no, if P(P)does not halt

We will call HALT as a subroutine ina
new program called CONFUSE.

CONFUSE(P):

If HALT(P) then loop_for_ever

Else return (i.e., halt)

<text of subroutine HALT goes here>

Does CONFUSE(CONFUSE) halt?

YES implies HALT(CONFUSE) = yes
thus, CONFUSE(CONFUSE) will not halt

NO implies HALT(CONFUSE) = no
thus, CONFUSE(CONFUSE) halts

CONFUSE(P):

If HALT(P) then loop_for_ever

Else return (i.e., halt)

<text of subroutine HALT goes here>

Does CONFUSE(CONFUSE) halt?

YES implies HALT(CONFUSE) = yes
thus, CONFUSE(CON ill not halt
NO implies HALT(CONFUSE) = no

thus, CONFUSE(CONFUSE) halts

/ Turing's argument is
essentially the
reincarnation of the
DIAGONALIZATION
argument from the
theory of infinities.

N

Po | Py | P, P,

Po

Py

P, P
/

YES, if P(P,) halts
No, otherwise

Py d;

Pl CIONF WS E | d=HALT(P)

CONFUSE(P)) halts iff d; = no
The CONFUSE row contains the
negation of the diagonal.

Alan Turing (1912-1954)

Is there a real
number that can
be described, but

not computed?

Lt

Lt

Consider the real\
number whose
binary expansion
has a1l in the ith

position iff PiDKy

Computability Theory:
Vocabulary Lesson

We call a set SO decidable or
recursive if there is a program P such
that:

P(x)=yes, if xOS
P(x)=no, if x0OS

We already know: K is undecidable

Computability Theory:
Vocabulary Lesson

We call a set SO enumerable or
recursively enumerable (r.e) if there is
a program P such that:

P prints an (infinite) list of strings.
Each element in S appears after a
finite amount of time. Any element on
the list should be in S.

Is K Enumerable?\

Lt

Enumerating K

For n =0 to forever do

{Loop through w = all strings of length < n do:
{If w(w) halts in n steps then Output w}

}

/K is NOT decidable, but it
is enumerable!

LetK' ={java P | P(P)
does not halt}

\ Is K’ enumerable?

/ Now that we have
established that the Halting
Set is undecidable, we can
use it for a jumping off
points for more “natural”
undecidability results.

N

Oracle For Set S

%% Is x(IS?
—_—

YES/NO

Example Oracle
S = Odd Naturals

P TEEEE— Oracle
—
for S

Yes

Ko= the set of programs that take no input and halt

Hey, I order an
oracle for the
famous halting set
K, but when I
opened the
package it was an
oracle for the
different set K.

Ko= the set of programs that take no input and halt

P = [input I; Q]
Does P(P) halt?

Does [I:=P;Q] halt?

GIVEN:
Oracle
for K,

_—
D —

Thus, if K, were decidable
then K would be as well.
We already know K is not
decidable, hence K, is not
decidable.

i)

HELLO = the set of program that print hello and halt

Does P halt? Let P’ be P with all print

Kk‘ statements removed.

[P’; print HELLO]
is a hello program?

_—>
BUILD: | €———————— | GIVEN:
Oracle HELLO
for K, Oracle

‘ HELLO is not decidable. ‘

&

EQUAL = All <P,Q> such that P and Q have identical
output behavior on all inputs

Does P equal
HELLO ? Let HI = [print HELLO]

BUILD: < GIVEN:
Oracle Oracle

Halting with input, Halting
without input, ﬁ
Hello, and

EQUAL are not decidable.

PHILOSOPHICAL
INTERLUDE

CHURCH-TURING THESIS

Any well-defined procedure
that can be grasped and
performed by the human mind
and pencil/paper, can be
performed on a conventional
digital computer with no bound
on memory.

The Church-Turing Thesis is NOT a
theorem. It is a statement of belief
concerning the universe we live in.

Your opinion will be influenced by your
religious, scientific, and philosophical
beliefs.

Empirical Intuition

No one has ever given a counter-
example to the Church-Turing thesis.
I.e., no one has given a concrete
example of something humans compute
in a consistent and well defined way,
but that can't be programmed on a
computer. The thesis is true.

Mechanical Intuition

The brain is a machine. The components
of the machine obey fixed physical
laws. In principle, an entire brain can be
simulated step by step on a digital
computer. Thus, any thoughts of such a
brain can be computed by a simulating
computer. The thesis is true.

Spiritual Intuition

The mind consists of part matter and
part soul. Soul, by its very nature,
defies reduction to physical law. Thus,
the action and thoughts of the brain
are not simulable or reducible to simple
components and rules. The thesis is
false.

Quantum Intuition

The brain is a machine, but not a
classical one. It is inherently quantum
mechanical in nature and does not
reduce to simple particles in motion.
Thus, there are inherent barriers to
being simulated on a digital computer.
The thesis is false. However, the thesis
is true if we allow quantum computers.

There are many other
viewpoints you might
have concerning the
Church-Turing Thesis.

But this ain’t philosophy
class!

Self-Reference Puzzle

Write a program that prints itself out
as output. No calls to the operating
system, or to memory external fo the
program.

Auto Cannibal Maker

Write a program AutoCannibalMaker
that takes the text of a program EAT
as input and outputs a program called
SELFg,r. When SELFg, 1 is executed it
should output EAT(SELFg,1)

Auto Cannibal Maker
Suppose Halt with no input was
programmable in JAVA.
Werite a program AutoCannibalMaker that
takes the text of a program EAT as input and

outputs a program called SELFg,. When
SELF¢,7 is executed it should ou¥puf
EAT(EEL

LFeat)

Let EAT(P) = halt, if P does not halt
loop forever, otherwise.

What does SELFg, do?

Contradiction! Hence EAT does not have
a corresponding JAVA program.

4X2Y + XY?2=0

Do this polynomial have an integer
root? I.e., does it have a zero at a point
where all variables are integers?

Diophantus: Given a multi-variate
polynomial over the integers, does it
have an integer root?

D = {multi-variant integer polynomials P
| P has a root where all variables are
integers}

Famous Theorem: D is Undecidablel!

[This is the solution to Hilbert's 10th
problem]

Polynomials can encode programs.

There is a computable function
F: Java programs that take no input ->
Polynomials over the integers

Such that

Program P halts €<= F(P) has an
intfeger root

D =the set of all integers polynomials with integer
roots

Does program P

halt?

‘@

A Million Dollar Diophantine Problem.

Does F(Nasty Program) have a root?

That Nasty
Polynomial!

S

10

Problems that have no\
obvious relation to halting,
or even to computation can

encode the Halting

Problem is non-obvious

ways.

/

Do these theorems about\
the limitations of
computation tell us
something about the
% limitations of human
thought?

_/

11

