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Probability III:

The probabilistic method & 
infinite probability spaces

Carnegie Mellon UniversityApril 5, 2005Lecture 23
CS 15-251       Spring 2005Anupam Gupta

Great Theoretical Ideas In Computer Science

Recap

Random Variables

•An event is a subset of S.  
•A Random Variable (RV) is a (real-
valued) function on S. P( )
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Example:

•Event A: the first die came up 1.

•Random Variable X: the value of 
the first die.

E.g., X(<3,5>)=3, X(<1,6>)=1.

It’s a floor wax and a dessert topping

It’s a variable with a 
probability distribution 

on its values.

It’s a function on 
the sample space S.

You should be comfortable 
with both views.

HMU

Definition: expectation

The expectation, or expected value of a 
random variable X is

E.g, 2 coin flips,
X = # heads.

What is E[X]?
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Thinking about expectation

D S
¼ ---TT
¼ ---TH
¼ ---HT
¼ ---HH

Distrib on X
0 --- ¼
1 --- ½
2 --- ¼ 

X

E[X] = ¼*0 + ¼*1 + ¼*1 + ¼*2 = 1.

E[X] = ¼*0 + ½*1 + ¼*2 = 1.
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Linearity of Expectation

If Z = X+Y, then

E[Z] = E[X] + E[Y]

Even if X and Y are not 
independent.

HMU

New topic: The probabilistic 
method

Use a probabilistic argument 
to prove a non-probabilistic 

mathematical theorem.

Definition: A cut in a graph.

A cut is a partition of the nodes of a 
graph into two sets: U and V. We say 
that an edge crosses the cut if it goes 
from a node is U to a node in V. 

Cut

U

V

Theorem:

In any graph, there 
exists a cut such that at 
least half the edges cross 
the cut.

Theorem:

In any graph, there exists a cut such that 
at least half the edges cross the cut.

How are we going to prove this?

Will show that if we pick a cut 
at random, the expected number 
of edges crossing is ½(# edges).

How does this prove the theorem?

What might 
be is surely 
possible!

Goal: show exists object of value at least v.
Proof strategy:

• Define distribution D over objects.
• Define RV: X(object) = value of object.
• Show E[X] ¸ v.  Conclude it must be 

possible to have X ¸ v.
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Theorem:

In any graph, there exists a cut such that 
at least half the edges cross the cut.

Proof: Pick a cut uniformly at 
random. I.e., for each node flip 
a fair coin to determine if it is 
in U or V.
Let Xe be the indicator RV for 
the event that edge e crosses 
the cut.
What is E[Xe]? Ans: ½.

Theorem:

In any graph, there exists a cut such that 
at least half the edges cross the cut.

Proof:
•Pick random cut.
•Let Xe=1 if e crosses, else Xe=0.
•Let X = total #edges crossing.
•So, X = ∑e Xe.
•Also, E[Xe] = ½.
•By linearity of expectation,

E[X] = ½(total #edges).

Pick a cut uniformly at random. 
I.e., for each node flip a fair 
coin to see if it should be in U.

E[#of edges crossing cut]
=               # of edges/2

The sample space of all possible cuts 
must contain at least one cut that at 
least half the edges cross: if not, 
the average number of edges would 
be less than half!

Another example of prob. method

What you did on hwk #8.

•If you color nodes at random, Pr(every v 
has a neighbor of a different color) > 0.

•So, must exist coloring where every v has 
a neighbor of a different color.

•This then implied existence of even-
length cycle.

In this case you can, 
through a neat strategy 

called the conditional 
expectation method

Back to cuts: Can you use 
this argument to also find 

such a cut?

Idea: make decisions in 
greedy manner to maximize 

expectation-to-go.

HMU

First, a few more facts…

For any partition of the sample space S into 
disjoint events A1, A2, ..., An,  and any event B,
Pr(B) = ∑i Pr(B \ Ai) = ∑i Pr(B|Ai)Pr(Ai). 

A1 A2 A3 .              ...           An

B
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Def: Conditional Expectation

For a random variable X and event A, the 
conditional expectation of X given A is 
defined as:

E.g., roll two dice.  X = sum of dice, E[X] = 7.
Let A be the event that the first die is 5.

E[X|A] = 8.5 

Def: Conditional Expectation

For a random variable X and event A, the 
conditional expectation of X given A is 
defined as:

Useful formula: for any partition of S into A1,A2,...
we have:  E[X] = ∑i E[X|Ai]Pr(Ai).

Proof: just plug in  Pr(X=k) = ∑i Pr(X=k|Ai)Pr(Ai).

Pick random cut.
•Let Xe=1 if e crosses, else Xe=0.
•Let X = total #edges crossing.
•So, X = ∑e Xe.
•Also, E[Xe] = ½.
•By linearity of expectation,

E[X] = ½(total #edges).

Recap of cut argument Conditional expectation method
Say we have already decided fate of nodes 
1,2,…,i-1.  Let X = number of edges crossing 
cut if we place rest of nodes into U or V at 
random.

Let A = event that node i is put into U.

So, E[X] = ½E[X|A] + ½E[X|:A]

It can’t be the case that both terms on the 
RHS are smaller than the LHS.  So just put 
node i into side whose C.E. is larger.

U V U VU V U V

U V U V

U V

Pictorial view (important!)

0 1 2 1 1 2 1 0

View S as leaves of choice tree.  ith choice is 
where to put node i.  Label leaf by value of X. 
E[X] = avg leaf value.

1

2 3

G

U V U VU V U V

U V U V

U V

Pictorial view (important!)

0 1 2 1 1 2 1 0

If A is some node (the event that we reach that node), 
then E[X|A] = avg value of leaves below A.
Alg = greedily follow path to maximize avg.

1

2 3

G
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Pictorial view (important!)

U V U VU V U V

U V U V

U V

0 1 2 1 1 2 1 0

Linearity of expectation gives us a way of 
magically computing E[X|A] for any node A. 
(Even though the tree has 2n leaves)

1

2 3

G

Pictorial view (important!)
In particular,  E[X|A] = (# edges crossing so 
far) + ½(# edges not yet determined)

1

2 3

G

U V U VU V U V

U V U V

U V

0 1 2 1 1 2 1 0

Conditional expectation method

In fact, our algorithm is just: put 
node i into the side that has the 
fewest of its neighbors so far.

(The side that causes the most of 
the edges determined so far to 
cross the cut).

But the probabilistic view was useful 
for proving that this works!

In many cases, though, we can’t get an 
exact handle on these expectation.  

Probabilistic method can often give us 
proof of existence without an algorithm 

for finding the thing.

In many cases, no efficient algorithms 
for finding the desired objects are 

known!

An easy question

A: 2.

0                      1         1.5         2

But it never actually gets 
to 2. Is that a problem?

But it never actually gets 
to 2. Is that a problem?

No, by ∑i=0 f(i), we really 
mean limn! 1 ∑i=0 f(i).

[if this is undefined, so is the sum]

In this case, the partial sum 
is 2-(½)n which goes to 2.

1

n
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A related question
Suppose I flip a coin of bias p, 
stopping when I first get heads.
What’s the chance that I:
•Flip exactly once?

Ans: p
•Flip exactly two times?

Ans: (1-p)p
•Flip exactly k times?

Ans: (1-p)k-1p
•Eventually stop?

Ans: 1.  (assuming p>0)

Pr(flip once) + Pr(flip 2 times) + 
Pr(flip 3 times) + ... = 1.

So, p + (1-p)p + (1-p)2p + (1-p)3p +...=1.

Or, using q = 1-p,

A related question

Pictorial view

Sample space S = leaves in this tree.  
Pr(x) = product of edges on path to x. 
If p>0, prob of not halting by time n goes to 0 
as n!1.

p 1-p

...
p

p

p

1-p

1-p

Pr(x|A)=product of edges on path from A to x.
E[X] = ∑x Pr(x)X(x).
E[X|A] = ∑x2 A Pr(x|A)X(x).  I.e., it is as if 

we started the game at A.

p 1-p

...

p

p

p

1-p

1-p

Use to reason about expectations too

Use to reason about expectations too

Flip bias-p coin until heads.  What is 
expected number of flips?

p 1-p

...

p

p

p

1-p

1-p

Use to reason about expectations too

Let X = # flips.
Let A = event that 1st flip is heads.
E[X] = E[X|A]Pr(A) + E[X|:A]Pr(:A)

= 1*p  +  (1 + E[X])*(1-p).
Solves to pE[X] = p + (1-p), so E[X] = 1/p.

p 1-p

...

p

p

p

1-p

1-p

1

2

3

4
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Infinite Probability spaces
Notice we are using infinite probability 
spaces here, but we really only defined things 
for finite spaces so far.

Infinite probability spaces can sometimes be 
weird.  Luckily, in CS we will almost always be 
looking at spaces that can be viewed as 
choice trees where 

Pr(haven’t halted by time t) ! 0 as t!1.

General picture
Let S be a sample space we can view as leaves 
of a choice tree.

Let Sn = {leaves at depth · n}.

For event A, let An = A\Sn.

If limn!1Pr(Sn)=1, can define:

Pr(A)=limn!1Pr(An).

p 1-p

...

p
p

p

1-p
1-p

Setting that doesn’t fit our model

Flip coin until #heads > 2*#tails.

There’s a reasonable chance this will 
never stop... 

Random walk on a line
You go into a casino with $k, and at each 
time step you bet $1 on a fair game. 
Leave when you are broke or have $n.

Question 1: what is your expected 
amount of money at time t?

Let Xt be a R.V. for the amount of money 
at time t.

0 n

Random walk on a line
You go into a casino with $k, and at each time step you bet 
$1 on a fair game. Leave when you are broke or have $n.
Question 1: what is your expected amount of money at 
time t?

Xt = k + δ1 + δ2 + ... + δt, where δi is a RV for 
the change in your money at time i.

E[δi] = 0, since E[δi|A] = 0 for all situations 
A at time i.

So, E[Xt] = k.

Random walk on a line

You go into a casino with $k, and at 
each time step you bet $1 on a fair 
game.  Leave when you are broke or 
have $n.

Question 2: what is the probability you 
leave with $n?
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Random walk on a line
You go into a casino with $k, and at each time step you bet $1 
on a fair game.  Leave when you are broke or have $n.
Question 2: what is the probability you leave with $n?

One way to analyze:
• E[Xt] = k.
• E[Xt] = E[Xt|Xt=0]*Pr(Xt=0) + E[Xt|Xt=n]*Pr(Xt=n) + 

E[Xt|neither]*Pr(neither).
• So, E[Xt] = 0 + n*Pr(Xt=n) + something*Pr(neither).
• As t! 1, Pr(neither)! 0.  Also 0 < something < n.

So, limt!1 Pr(Xt=n) = k/n.
So, Pr(leave with $n) = k/n.

Expectations in infinite spaces
Let S be a sample space we can view as leaves 
of a choice tree.
Let Sn = {leaves at depth · n}.
Assume limn!1Pr(Sn)=1.

E[X] = limn!1∑x2 S Pr(x)X(x).

If this limit is undefined, then the expectation is 
undefined.  E.g., I pay you (-2)i dollars if fair coin 
gets i heads before a tail. Can get weird even if 
infinite. To be safe, should have all E[X|A] be finite.

p 1-p

...

p
p

p

1-p
1-p

1

2

3
4

n

A slightly different question

If X is a RV in dollars, do we 
want to maximize E[X]?

Bernoulli’s St. Petersburg Paradox (1713)
Consider the following “St. Petersburg 
lottery” game:
• An official flips a fair coin until it turns up 

heads.
• If i flips needed, you win 2i dollars.

What is E[winnings]? 

How much would you pay to play?

Similar question

Which would you prefer:
(a) $1,000,000.  Or,
(b) A 1/1000 chance at $1,000,000,000.

Why?

Utility Theory 
(Bernoulli/Cramer, 1728-1738)

Each person has his/her own utility function.  
Ui($1000) = value of $1000 to person i.

Instead of maximizing E[X] (where X is in 
dollars), person i wants to maximize 
E[Ui(X)].   Ui(X) is a random variable.
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Utility Theory

Common utility functions economists consider:
• U(X) = log(X).  E.g., the amount of work 

you would be willing to do to double your 
wealth is independent of the amount of 
money you have.

• U(X) has some asymptote: “no amount of 
money is worth [fill in blank]”

Utility Theory

Letters between Nicolas Bernoulli, Cramer, 
Daniel Bernoulli and others: 1713-1732: 

see http://cerebro.xu.edu/math/Sources/Montmort/stpetersburg.pdf


