Great Theoretical Ideas In Computer Science
Steven Rudich, Anupam Gupta CS 15-251 Spring 2005
Lecture 22 March 31, 2005 Carnegie Mellon University

Decision Trees and Information:
A Question of Bits

[-

Choice Tree

o
hn
@ & G

A choice tree is a rooted, directed tree
with an object called a "choice”
associated with each edge and

a label on each leaf.

Choice Tree Representation of S

o
Lhn
@ & G

We satisfy these two conditions:
Each leaf label is in S
Each element from S on exactly one leaf.

Question Tree Representation of S

o
AN
@ & G

I am thinking of an outfit.
Ask me questions until you know which one.

What color is the beanie?
What color is the tie?

/ When a question tree has\

at most 2 choices at each node,
we will call it a decision tree,
or a decision strategy.

*/ Note: Nodes with one choices

represent stupid questions, but
we do allow stupid ques‘rions./

20 Questions

S = set of all English nouns
Game:
I am thinking of an element of S.

You may ask up to 20 YES/NO questions.

What is a question strategy for this game?

20 Questions

Suppose S = {ag, q;, Gy, ..., Oy}
Binary search on S.

First question will be:
"Is the word in {a,, a, a,, ...

20 Questions
Decision Tree Representation

A decision tree with depth at most 20, which
has the elements of S on the leaves.

Decision tree for Decision tree for
{ao. a1, Gy, ., Q1y/2) {120 0 Qpt, O}

Decision Tree Representation

Theorem:
The binary-search decision tree for S with k+1
elements { a,, a;, a,, ..., a, } has depth

[log (k+1) |
= llog k] + 1

= |K|

™~

“the length of k
when written
in binary”

Another way to look at it

Suppose you are thinking of the nouna, in S
We ask about each bit of index m

Is the leftmost bit of m 0?
Is the next bit of m 0?

Theorem: The binary-search decision-tree for
S={ay a0, .., qa} has depth

k| =Llog k| +1

A lower bound

Theorem: No decision tree for S (with k+1
elements) can have depth d <[log k| + 1.

Proof:

A depth d binary tree can have at most 2¢ leaves.

But d < [log k] + 1 = number of leaves 29 < (k+1)
Hence some element of S is not a leaf.

Tight bounds!

The optimal-depth decision tree
for any set S with (k+1) elements has depth

Llog k] +1=|K]|

Recall...

The minimum number of bits used to represent
unordered 5 card poker hands =

logs (52ﬂ

= 22 bits

= The decision tree depth for 5 card poker hands.

Prefix-free Set

Let T be a subset of {0,1}".

Definition:
T is prefix-free if for any distinct x,y € T,

if [x| < |y], then x is not a prefix of y

Example:
{000, 001, 1, 01} is prefix-free
{0} /01][10] 11,[101} is not.

Prefix-free Code for S

Let S be any set.

Definition: A prefix-free code for S is
a prefix-free set T and
a 1-1 "encoding” function f: S -> T.

The inverse function f-!is called the "decoding
function”.

Example: S = {apple, orange, mango}.
T ={0, 110, 1111},
f(apple) = O, f(orange) = 1111, f(mango) = 110.

N

What is so cool
about prefix-free
codes?

&%

/Sending sequences of\

elements of S over a
communications
channel ,

Let T be prefix-free and f be an encoding
function. Wish to send <x;, X,, X3, ...>

Sender: sends f(x;) f(x,) f(x3)...

Receiver: breaks bit stream into elements
of T and decodes using f!

Sending info on a channel

Example: S = {apple, orange, mango}.

T = {0, 110, 1111).
f(apple) = O, f(orange) = 1111, f(mango) = 110.

If we see
00011011111100...
we know it must be
0001101111 1100 ...
and hence
apple apple apple mango orange mango apple ...

Morse Code is not Prefix-freel

SOS encodes as ...-—-...

Morse Code is not Prefix-freel

SOS encodes as ...-—-...

Could decode as: ..|.-|--|..|.

Unless you use pauses

SOS encodes as ... --- ..

refix-free codes\

are also called
"self-delimiting”

,/4§£ﬁ;22i///fndes. —

P

Representing prefix-free codes

A = 100
B = 010
C = 101
D = 011
E = 00
F =11

“CAFE" would encode as 1011001100
How do we decode 1011001100 (fast)?

If you see: 1000101000111011001100

can decode as:

If you see: 1000101000111011001100

can decode as: A

If you see: 1000101000111011001100

can decode as: AB

If you see: 1000101000111011001100

can decode as: ABA

If you see: 1000101000111011001100

can decode as: ABAD

If you see: 1000101000111011001100

can decode as: ABADC

If you see: 1000101000111011001100

can decode as: ABADCA

If you see: 1000101000111011001100

can decode as: ABADCAF

If you see: 1000101000111011001100

can decode as: ABADCAFE

- Prefix S

-free codes

are yet another
representation of a

1SI :
‘* Theorem:

S has a decision tree of depth d
if and only if

S has a prefix-free code with all
codewords bounded by length d

Theorem:
S has a decision tree of depth d

if and only if

S has a prefix-free code with all
codewords bounded by length d

Extends to infinite sets

Let S is a subset of 2-

Theorem:

S has a decision tree where all length n elements
of S have depth < D(n)

if and only if

S has a prefix-free code where all length n strings
in S have encodings of length < D(n)

" Iam thinking of some S

natural number k.
ask me YES/NO questions in
order to determine k. >

Let d(k) be the number of questions that
you ask when I am thinking of k.

Let D(n) = max { d(k) over n-bit numbers k }.

" Iam thinking of some

natural number k -
ask me YES/NO questions in
order fo defermine k.

Naive strategy: Is it 0? 1? 2? 3? ...
d(k) = k+1
D(n) = 2"! since 21! -1 uses only n bits.

Effort is exponential in length of k Il

" Iam thinking of some
natural number Kk -
ask me YES/NO questions in

% determine k.

What is an efficient
question strategy?

_—

I am thinking of some
natural number k...

Does
Does
Does

Y

k have
k have

k have

ength 1?2 NO
ength 2?2 NO

ength 3?2 NO

Does k have length n? YES
Do binary search on strings of length n.

d(k) = [k + [k|

=2 ([logk]+1)

D(n) = 2n

Size First/ Binary Search

Does
Does
Does

k have
k have

k have

ength 1?2 NO
ength 2?2 NO

ength 3?2 NO

Does k have length n? YES
Do binary search on strings of length n.

oY

" What prefix-free code
corresponds to the
Size First / Binary Search

decision strategy?

T

I

f(k) = (|k| - 1) zeros, followed

by 1, and then by the binary

representation of k

[f(k) = 2 |k

B

" What prefix-free code
corresponds to the
Size First / Binary Search

decision strategy?

T

g

Or,

length of k in unary = |k| bits
k in binary = |k| bits

Another way to look at f

k = 27 = 11011, and hence |k| = 5

f(k) = 00001 11011

Another way to look at f

k = 27 = 11011, and hence |k| = 5
11011

f(k) = 00001 11011
[\7 0101000111

g(k) = 0101000111

Another way to look at the function g:

g(final 0) -> 10 g(all other 0's) -> 00
g(final 1) -> 11 g(all other 1's) -> 01

"Fat Binary" < Size First/Binary Search strategy

Is it possible to beat 2n questions

to find a number of length n?

y TN

ook at the prefix-free code...

Any obvious improvement
suggest itself here?

g

the fat-binary map f concatenates

length of k in@nary)= |k| bits
k in binary — |k| bits

fat binary!

= In fat-binary, D(n) < 2n N
Now D(n) <n+2 (| logn | +1)

Can you do better?

better-than-Fat-Binary-code(k)
concatenates

length of k in fat binary = 2| |k|| bits
k in binary — |k| bits

—

Hey, wait!

In a better prefix-free code

RecursiveCode(k) concatenate

™

S
\RecursiveCode(IkI) & kin binayxﬁ

better-t-better-thanFB

g T R

L= B I =) |

Al . T D e ...

TIIGALIY | AT Wil ,‘ COde
better-t-FB [kl + 2]]1k]]]

K| in-fatbingme. = Ml bite

k in binary — |k| bits

—

Oh, I need to remember how many
levels of recursion r(k)

In the final code
F(k) = F(r(k)) . RecursiveCode(k)/&&

N

I

r(k) = log* k

Hence, length of F(k)
= |kl + [[k[l+ [kl +..+1
+ | log*k | + ...

/Good, Bonzo! T had thought yh
had fallen asleep.

Your code is sometimes called

k the Ladder codel! /

" Maybe I can do better..

Can I get a prefix code
for k with length = log k ?

— -

S~

Let me tell you why
length = log k
is not possible

B

)

ﬁ)ecision trees have a na‘rur'ch

probabilistic interpretation.

Let T be a decision tree for S.

Start at the root, flip a fair
coin at each decision, and stop
when you get to a leaf.

Each sequence w in S will be hit

with probability 1/2!% /

Random walk down the tree

D A

Each sequence w in S will
be hit with probability 1/2w

Hence, Pr(F) = %+, Pr(A) = 1/8, Pr(C) = 1/8, ...

/Le’r T be a decision tree forh

(possibly countably infinite set)

The probability that some
element in S is hit by a random
walk down from the root is

> 1/2Mw <1

| !

Kraft Inequality

/Le‘r S be any prefix-free cod.\

Kraft Inequality:
> 172w <1

-

Fat Binary:
f(k) has 2|k| = 2 log k bits

S 2If0OI < 1

~ ZkGN l/kz

/Le‘r S be any prefix-free cod.\

Kraft Inequality:
> 172w <1

» -

Better-than-FatB Code:
f(k) has |k| + 2||k|]| bits

S 2lf00I < 1

& Yken 1/(k (log k)?)

/Le‘r S be any prefix-free cod.\

Kraft Inequality:
> 172w <1

» -

Ladder Code: k is represented by
[kl + [Tkl + [TIk[] + ... bits

Syen 317001 < 1

& Yy 1/(k logk loglogk ...)

/Le‘r S be any prefix-free cod.\

Kraft Inequality:
> 172w <1

» -

Can a code that represents k by
|k| = logk bits exist?

No, since >, . 1/k diverges !
So you can't get log n, Bonzo...

Back to compressing words

The optimal-depth decision tree
for any set S with (k+1) elements has depth

Llog k] + 1

U

The optimal prefix-free code
for A-Z + "space” has length

llog26]+1=5

English Letter Frequencies

But in English, different letters occur with
different freguencies.

A 8.1% F2.3% K.79% P16% U28% Z .04%
B1.4% G 2.1% L 3.7% Q .11% V .86%

C2.3% H6.6% M 2.6% R6.2% W 2.4%

D4.7% I6.8% N 7.1% 56.3% X 11%

E 12% J 11% O7.7% T9.0% Y 2.0%

ETAONIHSRDLUMWCFGYPBVKQXJZ

short encodings!

Why should we try to minimize
the maximum length of a codeword?

If encoding A-Z, we will be happy if
the "average codeword” is short.

Morse Code

ETAONIHSRDLUMWCFGYPBVKQXJZ

/Given frequencies for A—Z,\

what is the optimal
prefix-free encoding of the
alphabet?

I.e., one that minimizes the

/\ average code length /

Huffman Codes: Optimal Prefix-free
Codes Relative to a Given Distribution

Here is a Huffman code based on the English letter

frequencies given earlier:
A 1011 F 101001 K 10101000 P 111000 U 00100

B 111001 G 101000 L 11101 Q 1010100100 V 1010101
¢ 01010 H 1100 M 00101 R 0011 W 01011
D 0100 T 1111 N 1000 S 1101 X 1010100101
E 000 J 1010100110 O 1001 TO11 Y 101011
Z 1010100111

But Huffman coding uses only letter frequencies.

For any fixed language, we can use correlations!
E.g., Q is almost always followed by U...

Random words

Randomly generated letters from A-Z, space
not using the frequencies at all:

XFOML RXKHRJFFJUJ ALPWXFW]JXY]
FFJEYVJCQSGHYD QPAAMKBZAACIBZLKJQD

Random words

Using only single character frequencies:

OCRO HLO RGWR NMIELWIS EU LL NBNESEBYA TH
EEl ALHENHTTPA OOBTTVA NAH BRL

Random words

Each letter depends on the previous letter:

ON IE ANTSOUTINYS ARE T INCTORE ST BE S
DEAMY ACHIN D ILONASIVE TUCOOWE AT
TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE

Random words

Each letter depends on 2 previous letters:

IN NO IST LAT WHEY CRATICT FROURE BIRS
GROCID PONDENOME OF DEMONSTURES OF THE
REPTAGIN IS REGOACTIONA OF CRE

Random words

Each letter depends on 3 previous letters:

THE GENERATED JOB PROVIDUAL BETTER TRAND
THE DISPLAYED CODE, ABOVERY UPONDULTS WELL
THE CODERST IN THESTICAL IT DO HOCK
BOTHEMERG.

(INSTATES CONS ERATION. NEVER ANY OF PUBLE
AND TO THEORY. EVENTIAL CALLEGAND TO ELAST
BENERATED IN WITH PIES AS IS WITH THE)

References

The Mathematical Theory of Communication,
by €. Shannon and W. Weaver

Elements of Information Theory, by T. Cover
and J. Thomas

