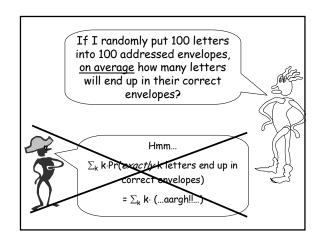
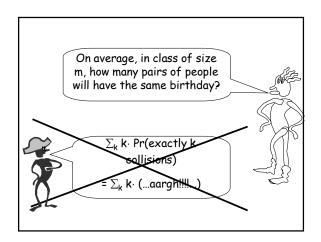
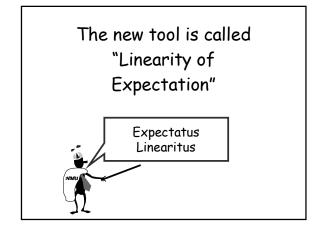


Today, we will learn about a formidable tool in probability that will allow us to solve problems that seem really really messy...



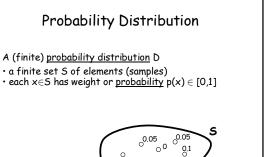




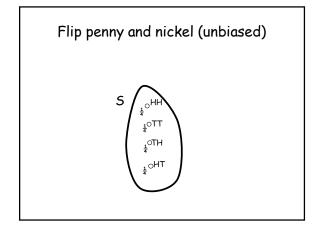
Random Variable

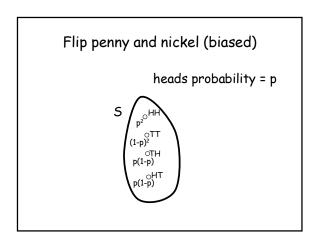
To use this new tool, we will also need to understand the concept of a <u>Random Variable</u>

Today's goal: not too much material, but to understand it well.

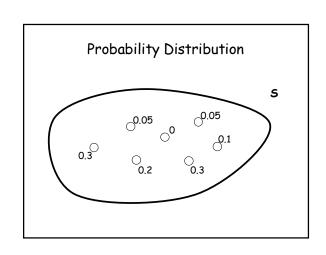


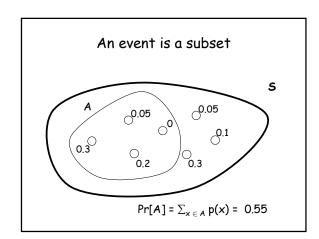
"Sample space"

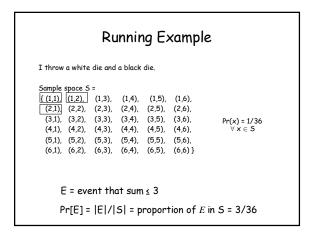




weights must sum to 1







New concept: Random Variables

Random Variables

Random Variable: a (real-valued) function on S

Examples:

X = value of white die. X(3,4) = 3, X(1,6) = 1 etc. Y = sum of values of the two dice. Y(3,4) = 7, Y(1,6) = 7 etc. W = (value of white die) value of black die $W(3,4) = 3^4$ $Y(1,6) = 1^6$

Sample space S = { (1.1), (1.2), (1.3), (1.4), (1.5), (1.6), (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (3.1), (3.2), (3.3), (3.4), (3.5), (3.6), (4.1), (4.2), (4.3), (4.4), (4.5), (4.6), (5.1), (5.2), (5.3), (5.4), (5.5), (5.6), (6.1), (6.2), (6.3), (6.4), (6.5), (6.6)}

Toss a white die and a black die,

Z = (1 if two dice are equal, 0 otherwise) $Z(4,4) = 1, \qquad Z(1,6) = 0 \text{ etc.}$

E.g., tossing a fair coin n times

 $\begin{array}{l} S = all \ sequences \ of \ \{H, T\}^n \\ D = uniform \ distribution \ on \ S \\ \Rightarrow D(x) = (\frac{1}{2})^n \quad for \ all \quad x \in S \end{array}$

Random Variables (say n = 10)

X = # of heads

X(HHHTTHTHTT) = 5

Y = (1 if #heads = #tails, 0 otherwise)

Y(HHHTTHTHTT) = 1, Y(THHHHTTTTT) = 0

Notational conventions

Use letters like A, B, E for events.

Use letters like X, Y, f, g for R.V.'s.

R.V. = random variable

Two views of random variables

Think of a R.V. as

- · a function from S to the reals P
- \cdot or think of the induced distribution on P

Two views of random variables

Think of a R.V. as

- · a function from S to the reals P
- \cdot or think of the induced distribution on P

Two coins tossed X: {TT, TH, HT, HH} \rightarrow {0, 1, 2} counts the number of heads S \downarrow_{0}^{OHH} \downarrow_{1}^{OTH} \downarrow_{1}^{OTH} \downarrow_{1}^{OTH} \downarrow_{1}^{OHT} \downarrow_{1}^{OHT} \downarrow_{1}^{OHT} \downarrow_{1}^{OHT} \downarrow_{1}^{OHT} \downarrow_{1}^{OHT} \downarrow_{1}^{OHT} \downarrow_{1}^{OHT} \downarrow_{1}^{OHT} \downarrow_{1}^{OHT}

Two views of random variables

Think of a R.V. as

- \cdot a function from S to the reals P
- · or think of the induced distribution on P

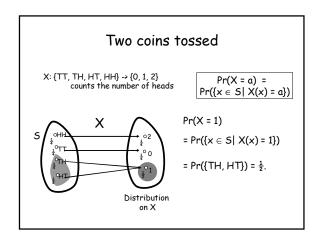
Two dice I throw a white die and a black die. Sample space $S = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}$ X = sum of both dicefunction with X(1,1) = 2, X(1,2) = X(2,1) = 3, ..., X(6,6) = 12

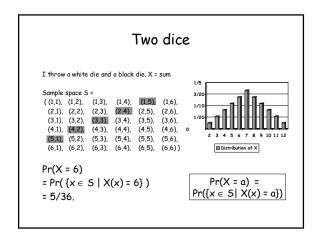
It's a floor wax and a dessert topping It's a function on the sample space 5. It's a variable with a probability distribution on its values. You should be comfortable with both views.

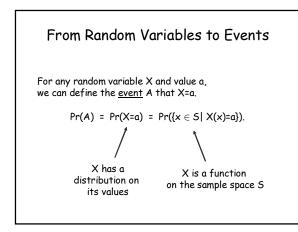
From Random Variables to Events

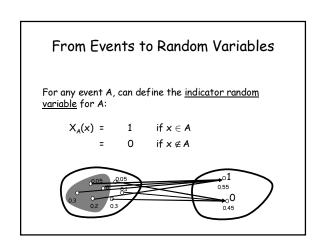
For any random variable X and value a, we can define the <u>event</u> A that X=a.

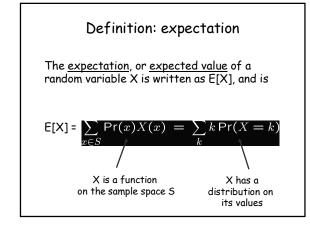
 $Pr(A) \ = \ Pr(X=a) \ = \ Pr(\{x \in S \mid X(x)=a\}).$

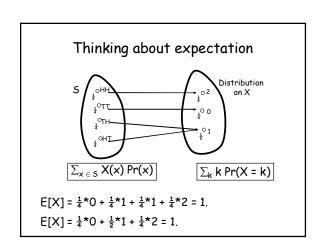












A quick calculation...

What if I flip a coin 3 times? Now what is the expected number of heads?

$$E[X] = (1/8) \times 0 + (3/8) \times 1 + (3/8) \times 2 + (1/8) \times 3 = 1.5$$

But Pr[X = 1.5] = 0...

Moral: don't always expect the expected. Pr[X = E[X]] may be 0!

Type checking

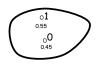
A Random Variable is the type of thing you might want to know an expected value of.

If you are computing an expectation, the thing whose expectation you are computing is a random variable.

Indicator R.V.s: $E[X_A] = Pr(A)$

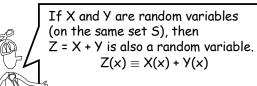
For event A, the $\underline{indicator\ random\ variable}$ for A:

$$X_A(x) = 1$$
 if $x \in A$
= 0 if $x \notin A$

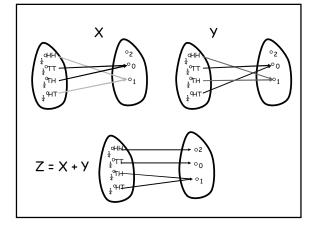


 $E[X_A] = 1 \times Pr(X_A = 1) = Pr(A)$

Adding Random Variables



E.g., rolling two dice. X = 1st die, Y= 2nd die, Z = sum of two dice.



Adding Random Variables

Example: Consider picking a random person in the world. Let X = length of the person's left arm in inches. Y = length of the person's right arm in inches. Let Z = X+Y. Z measures the combined arm lengths.

Formally, S = {people in world}, D = uniform distribution on S.

